Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Malar J ; 19(1): 35, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964374

RESUMO

BACKGROUND: Quality control of indoor residual spraying (IRS) is necessary to ensure that spray operators (SOs) deposit the correct concentration of insecticide on sprayed structures, while also confirming that spray records are not being falsified. METHODS: Using high-performance liquid chromatography (HPLC), this study conducted quality control of the organophosphate insecticide pirimiphos-methyl (Actellic 300CS), during the 2018 IRS round on Bioko Island, Equatorial Guinea. Approximately 60 SOs sprayed a total of 67,721 structures in 16,653 houses during the round. Houses that were reportedly sprayed were randomly selected for quality control testing. The SOs were monitored twice in 2018, an initial screening in March followed by sharing of results with the IRS management team and identification of SOs to be re-trained, and a second screening in June to monitor the effectiveness of training. Insecticide samples were adhesive-lifted from wooden and cement structures and analysed using HPLC. RESULTS: The study suggests that with adequate quality control measures and refresher training, suboptimal spraying was curtailed, with a significant increased concentration delivered to the bedroom (difference = 0.36, P < 0.001) and wooden surfaces (difference 0.41, P = 0.001). Additionally, an increase in effective coverage by SOs was observed, improving from 80.7% in March to 94.7% in June after re-training (McNemar's test; P = 0.03). CONCLUSIONS: The ability to randomly select, locate, and test houses reportedly sprayed within a week via HPLC has led to improvements in the performance of SOs on Bioko Island, enabling the project to better evaluate its own performance.


Assuntos
Inseticidas/administração & dosagem , Malária/prevenção & controle , Controle de Mosquitos/normas , Compostos Organotiofosforados/administração & dosagem , Aerossóis , Animais , Cromatografia Líquida de Alta Pressão/economia , Guiné Equatorial , Habitação , Humanos , Ilhas , Controle de Mosquitos/métodos , Organofosfatos/análise , Controle de Qualidade , Estações do Ano , Fatores de Tempo
2.
Malar J ; 13: 178, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24885084

RESUMO

BACKGROUND: The quality of routine indoor residual spraying (IRS) operations is rarely assessed because of the limited choice of methods available for quantifying insecticide content in the field. This study, therefore, evaluated a user-friendly, rapid colorimetric assay for detecting insecticide content after routine IRS operations were conducted. METHODS: This study was conducted in Tafea Province, Vanuatu. Routine IRS was conducted with lambda cyhalothrin. Two methods were used to quantify the IRS activities: 1) pre-spray application of small felt pads and 2) post-spray removal of insecticide with adhesive. The insecticide content was quantified using a colorimetric assay (Insecticide Quantification Kit [IQK]), which involved exposing each sample to the test reagents for 15 mins. The concentration of insecticide was indicated by the depth of red colour. RESULTS: The IQK proved simple to perform in the field and results could be immediately interpreted by the programme staff. The insecticide content was successfully sampled by attaching felt pads to the house walls prior to spraying. The IRS operation was well conducted, with 83% of houses being sprayed at the target dose (20 - 30 mg AI/m2). The average reading across all houses was 24.4 ± 1.5 mg AI/m2. The results from the felt pads applied pre-spray were used as a base to compare methods for sampling insecticide from walls post-spray. The adhesive of Sellotape did not collect adequate samples. However, the adhesive of the felt pads provided accurate samples of the insecticide content on walls. CONCLUSION: The IQK colorimetric assay proved to be a useful tool that was simple to use under realistic field conditions. The assay provided rapid information on IRS spray dynamics and spray team performance, facilitating timely decision making and reporting for programme managers. The IQK colorimetric assay will have direct applications for routine quality control in malaria control programmes globally and has the potential to improve the efficacy of vector control operations.


Assuntos
Aerossóis/química , Técnicas de Química Analítica/métodos , Colorimetria/métodos , Inseticidas/análise , Controle de Mosquitos/métodos , Piretrinas/análise , Vanuatu
3.
Sci Rep ; 13(1): 14124, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644079

RESUMO

Chlorfenapyr is a pro-insecticide increasingly used in combination with pyrethroids such as a-cypermethrin or deltamethrin in insecticide treated bednets (ITNs) to control malaria transmitted by pyrethroid-resistant mosquito populations. Chlorfenapyr requires P450 activation to produce tralopyril and other bioactive metabolites. Pyrethroid resistance is often associated with elevated levels of chemoprotective P450s with broad substrate specificity, which could influence chlorfenapyr activity. Here, we have investigated chlorfenapyr metabolism by a panel of eight P450s commonly associated with pyrethroid resistance in An. gambiae and Ae. aegypti, the major vectors of malaria and arboviruses. Chlorfenapyr was activated to tralopyril by An. gambiae CYP6P3, CYP9J5, CYP9K1 and Ae. aegypti, CYP9J32. The Kcat/KM value of 0.66 µM-1 min-1 for CYP9K1 was, 6.7 fold higher than CYP6P3 and CYP9J32 (both 0.1 µM-1 min-1) and 22-fold higher than CYP9J5 (0.03 µM-1 min-1). Further investigation of the effect of -cypermethrin equivalent to the ratios used with chlorfenapyr in bed nets (~ 1:2 molar ratio) resulted in a reduction in chlorfenapyr metabolism by CYP6P3 and CYP6K1 of 76.8% and 56.8% respectively. This research provides valuable insights into the metabolism of chlorfenapyr by mosquito P450s and highlights the need for continued investigation into effective vector control strategies.


Assuntos
Culicidae , Piretrinas , Animais , Mosquitos Vetores , Piretrinas/farmacologia
4.
Sci Rep ; 12(1): 9715, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690679

RESUMO

Long-lasting insecticide-treated nets (LLINs) play a crucial role in preventing malaria transmission. LLINs should remain effective for at least three years, even after repeated washings. Currently, monitoring insecticides in LLINs is cumbersome, costly, and requires specialized equipment and hazardous solvents. Our aim was to develop a simple, high-throughput and low-resource method for measuring insecticides in LLINs. To extract insecticides, polyethylene-LLIN samples were heated at 85 °C for 45 min in a non-hazardous solvent mix containing dicyclohexylphthalate as an internal standard. The extraction solvent was reduced from 50 to 5 ml using a 0.2 g sample, 90% smaller than the recommended sample size. By optimizing HPLC chromatography, we simultaneously detected pyrethroid and pyriproxyfen insecticides with high sensitivity in LLIN's extract. The method can quantify levels ≥ 0.0015% permethrin, 0.00045% alpha-cypermethrin and 0.00025% pyriproxyfen (w/w) in polyethylene, allowing for insecticide tracking before and after the use of LLINs. This method can be used to assess LLINs with 1% pyriproxyfen (pyriproxyfen-LLIN) or 2% permethrin (Olyset® Net), 1% pyriproxyfen and 2% permethrin (Olyset® Duo), or 0.55% pyriproxyfen and 0.55% alpha-cypermethrin (Royal Gaurd®). One can run 120 samples (40 nets) simultaneously with high precision and accuracy, improving throughput and reducing labour, costs, and environmental impact.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Piretrinas , Animais , Cromatografia Líquida de Alta Pressão , Resistência a Inseticidas , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Permetrina , Polietilenos , Piridinas , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA