RESUMO
Unfavorable genetic correlations between milk production, fertility, and urea traits have been reported. However, knowledge of the genomic regions associated with these unfavorable correlations is limited. Here, we used the correlation scan method to identify and investigate the regions driving or antagonizing the genetic correlations between production vs. fertility, urea vs. fertility, and urea vs. production traits. Driving regions produce an estimate of correlation that is in the same direction as the global correlation. Antagonizing regions produce an estimate in the opposite direction of the global estimates. Our dataset comprised 6567, 4700, and 12,658 Holstein cattle with records of production traits (milk yield, fat yield, and protein yield), fertility (calving interval) and urea traits (milk urea nitrogen and blood urea nitrogen predicted using milk-mid-infrared spectroscopy), respectively. Several regions across the genome drive the correlations between production, fertility, and urea traits. Antagonizing regions were confined to certain parts of the genome and the genes within these regions were mostly involved in preventing metabolic dysregulation, liver reprogramming, metabolism remodeling, and lipid homeostasis. The driving regions were enriched for QTL related to puberty, milk, and health-related traits. Antagonizing regions were mostly related to muscle development, metabolic body weight, and milk traits. In conclusion, we have identified genomic regions of potential importance for dairy cattle breeding. Future studies could investigate the antagonizing regions as potential genomic regions to break the unfavorable correlations and improve milk production as well as fertility and urea traits.
Assuntos
Fertilidade , Leite , Locos de Características Quantitativas , Ureia , Animais , Bovinos/genética , Fertilidade/genética , Ureia/metabolismo , Leite/química , Leite/metabolismo , Feminino , Lactação/genética , Austrália , Fenótipo , CruzamentoRESUMO
Although the genetic correlations between complex traits have been estimated for more than a century, only recently we have started to map and understand the precise localization of the genomic region(s) that underpin these correlations. Reproductive traits are often genetically correlated. Yet, we don't fully understand the complexities, synergism, or trade-offs between male and female fertility. In this study, we used reproductive traits in two cattle populations (Brahman; BB, Tropical Composite; TC) to develop a novel framework termed correlation scan (CS). This framework was used to identify local regions associated with the genetic correlations between male and female fertility traits. Animals were genotyped with bovine high-density single nucleotide polymorphisms (SNPs) chip assay. The data used consisted of ~1000 individual records measured through frequent ovarian scanning for age at first corpus luteum (AGECL) and a laboratory assay for serum levels of insulin growth hormone (IGF1 measured in bulls, IGF1b, or cows, IGF1c). The methodology developed herein used correlations of 500-SNP effects in a 100-SNPs sliding window in each chromosome to identify local genomic regions that either drive or antagonize the genetic correlations between traits. We used Fisher's Z-statistics through a permutation method to confirm which regions of the genome harboured significant correlations. About 30% of the total genomic regions were identified as driving and antagonizing genetic correlations between male and female fertility traits in the two populations. These regions confirmed the polygenic nature of the traits being studied and pointed to genes of interest. For BB, the most important chromosome in terms of local regions is often located on bovine chromosome (BTA) 14. However, the important regions are spread across few different BTA's in TC. Quantitative trait loci (QTLs) and functional enrichment analysis revealed many significant windows co-localized with known QTLs related to milk production and fertility traits, especially puberty. In general, the enriched reproductive QTLs driving the genetic correlations between male and female fertility are the same for both cattle populations, while the antagonizing regions were population specific. Moreover, most of the antagonizing regions were mapped to chromosome X. These results suggest regions of chromosome X for further investigation into the trade-offs between male and female fertility. We compared the CS with two other recently proposed methods that map local genomic correlations. Some genomic regions were significant across methods. Yet, many significant regions identified with the CS were overlooked by other methods.
Assuntos
Insulinas , Maturidade Sexual , Animais , Bovinos/genética , Feminino , Fertilidade/genética , Estudo de Associação Genômica Ampla/veterinária , Genômica , Hormônio do Crescimento/genética , Insulinas/genética , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Maturidade Sexual/genéticaRESUMO
Many animal species exhibit sex-limited traits, where certain phenotypes are exclusively expressed in one sex. Yet, the genomic regions that contribute to these sex-limited traits in males and females remain a subject of debate. Reproductive traits are ideal phenotypes to study sexual differences since they are mostly expressed in a sex-limited way. Therefore, this study aims to use local correlation analyses to identify genomic regions and biological pathways significantly associated with male and female sex-limited traits in two distinct cattle breeds (Brahman [BB] and Tropical Composite [TC]). We used the Correlation Scan method to perform local correlation analysis on 42 trait pairs consisting of six female and seven male reproductive traits recorded on ~1,000 animals for each sex in each breed. To pinpoint a specific region associated with these sex-limited reproductive traits, we investigated the genomic region(s) consistently identified as significant across the 42 trait pairs in each breed. The genes found in the identified regions were subjected to Quantitative Trait Loci (QTL) colocalization, QTL enrichment analyses, and functional analyses to gain biological insight into sexual differences. We found that the genomic regions associated with the sex-limited reproductive phenotypes are widely distributed across all the chromosomes. However, no single region across the genome was associated with all the 42 reproductive trait pairs in the two breeds. Nevertheless, we found a region on the X-chromosome to be most significant for 80% to 90% (BB: 33 and TC: 38) of the total 42 trait pairs. A considerable number of the genes in this region were regulatory genes. By considering only genomic regions that were significant for at least 50% of the 42 trait pairs, we observed more regions spread across the autosomes and the X-chromosome. All genomic regions identified were highly enriched for trait-specific QTL linked to sex-limited traits (percentage of normal sperm, metabolic weight, average daily gain, carcass weight, age at puberty, etc.). The gene list created from these identified regions was enriched for biological pathways that contribute to the observed differences between sexes. Our results demonstrate that genomic regions associated with male and female sex-limited reproductive traits are distributed across the genome. Yet, chromosome X seems to exert a relatively larger effect on the phenotypic variation observed between the sexes.
Many livestock species show sexual differences between males and females. However, we still do not fully understand the specific area of the genome responsible for these differences. This study used a novel method to investigate this research question in two distinct tropically adapted cattle. The study found that the drivers of sexual differences are widely distributed across the animal's genome, but the sex chromosome seems to play a large role. The genes within these regions are mostly protein-coding and regulatory genes. These genes were involved in biological processes that promote differences between males and females.
Assuntos
Locos de Características Quantitativas , Reprodução , Animais , Bovinos/genética , Bovinos/fisiologia , Masculino , Feminino , Reprodução/genética , Fenótipo , Genoma , Genômica , Caracteres SexuaisRESUMO
Biologically informed single nucleotide polymorphisms (SNPs) impact genomic prediction accuracy of the target traits. Our previous genomics, proteomics, and transcriptomics work identified candidate genes related to puberty and fertility in Brahman heifers. We aimed to test this biological information for capturing heritability and predicting heifer fertility traits in another breed i.e., Tropical Composite. The SNP from the identified genes including 10 kilobases (kb) region on either side were selected as biologically informed SNP set. The SNP from the rest of the Bos taurus genes including 10-kb region on either side were selected as biologically uninformed SNP set. Bovine high-density (HD) complete SNP set (628,323 SNP) was used as a control. Two populations-Tropical Composites (N = 1331) and Brahman (N = 2310)-had records for three traits: pregnancy after first mating season (PREG1, binary), first conception score (FCS, score 1 to 3), and rebreeding score (REB, score 1 to 3.5). Using the best linear unbiased prediction method, effectiveness of each SNP set to predict the traits was tested in two scenarios: a 5-fold cross-validation within Tropical Composites using biological information from Brahman studies, and application of prediction equations from one breed to the other. The accuracy of prediction was calculated as the correlation between genomic estimated breeding values and adjusted phenotypes. Results show that biologically informed SNP set estimated heritabilities not significantly better than the control HD complete SNP set in Tropical Composites; however, it captured all the observed genetic variance in PREG1 and FCS when modeled together with the biologically uninformed SNP set. In 5-fold cross-validation within Tropical Composites, the biologically informed SNP set performed marginally better (statistically insignificant) in terms of prediction accuracies (PREG1: 0.20, FCS: 0.13, and REB: 0.12) as compared to HD complete SNP set (PREG1: 0.17, FCS: 0.10, and REB: 0.11), and biologically uninformed SNP set (PREG1: 0.16, FCS: 0.10, and REB: 0.11). Across-breed use of prediction equations still remained a challenge: accuracies by all SNP sets dropped to around zero for all traits. The performance of biologically informed SNP was not significantly better than other sets in Tropical Composites. However, results indicate that biological information obtained from Brahman was successful to predict the fertility traits in Tropical Composite population.
Prior biological information can be helpful in the genomic prediction of the traits. Previous multi-omics studies by our group identified genes relevant to puberty and fertility in Brahman cattle, a beef breed in northern Australia. We used this biological information in the genomic prediction of three heifer fertility traits, measured in another beef cattle breed: Tropical Composites. The three traits were: pregnancy status after the first mating season (PREG1), first conception score (FCS), and rebreeding score (REB). To test if prior biological information could capture genetic variation in the traits and improve genomic predictions, we compared the results obtained using three subsets of genetic information (i.e., subsets of DNA variants). The first subset contained only variants deemed biologically relevant (as per previous multi-omics studies). The second subset contained only variants considered biologically irrelevant. The third subset had all the variants contained in the commercial DNA assay known as the bovine high-density chip, intended as a practical control. The results indicate that multi-omics data was informative across breed scenario and can be useful in informing genomic predictions of traits of interest.