Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Dairy Sci ; 106(5): 3203-3216, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37028971

RESUMO

The supplementation of dairy cows with tannins can reduce the ruminal degradation of dietary protein and urine N excretion, but high concentration in the diet can impair ruminal function, diet digestibility, feed intake, and milk yield. This study evaluated the effect of low concentrations (0, 0.14, 0.29, or 0.43% of diet in DM basis) of a tannin extract from the bark of Acacia mearnsii (TA) on milking performance, dry matter intake (DMI), digestibility, chewing behavior, ruminal fermentation, and N partition of dairy cows. Twenty Holstein cows (34.7 ± 4.8 kg/d, 590 ± 89 kg, and 78 ± 33 d in lactation) were individually fed a sequence of 4 treatments in 5, 4 × 4 Latin squares (with 21-d treatment periods, each with a 14-d adaptation period). The TA replaced citrus pulp in the total mixed ration and other feed ingredients were kept constant. Diets had 17.1% crude protein, mostly from soybean meal and alfalfa haylage. The TA had no detected effect on DMI (22.1 kg/d), milk yield (33.5 kg/d), and milk components. The proportions in milk fat of mixed origin fatty acids (16C and 17C) and the daily secretion of unsaturated fatty acids were linearly reduced and the proportion of de novo fatty acids was increased by TA. Cows fed TA had linear increase in the molar proportion of butyrate and linear reduction in propionate in ruminal fluid, whereas acetate did not differ. There was a tendency for the ratio of acetate to propionate to be linearly increased by TA. Cows fed TA had a linear reduction in the relative ruminal microbial yield, estimated by the concentrations of allantoin and creatinine in urine and body weight. The total-tract apparent digestibility of neutral detergent fiber, starch, and crude protein also did not differ. The TA induced a linear increase in meal size and duration of the first daily meal and reduced meal frequency. Rumination behavior did not differ with treatment. Cows fed 0.43% TA selected against feed particles >19 mm in the morning. There were tendencies for linear decreases in milk urea N (16.1-17.3 mg/dL), urine N (153-168 g/d and 25.5-28.7% of N intake), and plasma urea N at 6, 18, and 21 h postmorning feeding, and plasma urea N 12 h postfeeding was reduced by TA. The proportion of N intake in milk (27.1%) and feces (21.4%) did not differ with treatment. Reductions in urine N excretion and milk and plasma urea N suggest that TA reduced ruminal AA deamination, whereas lactation performance did not differ. Overall, TA up to 0.43% of DM did not affect DMI and lactation performance, while there was a tendency to reduce urine N excretion.


Assuntos
Acacia , Feminino , Bovinos , Animais , Acacia/metabolismo , Taninos/farmacologia , Propionatos/metabolismo , Mastigação , Fermentação , Nitrogênio/metabolismo , Ração Animal/análise , Digestão , Leite/metabolismo , Dieta/veterinária , Lactação , Ácidos Graxos/metabolismo , Extratos Vegetais/farmacologia , Rúmen/metabolismo
2.
Mol Ecol ; 24(1): 151-79, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25442828

RESUMO

We compared whole transcriptome variation in six pre-adult stages and seven adult female ages in two populations of cactophilic Drosophila mojavensis reared on two host plants to understand how differences in gene expression influence standing life history variation. We used singular value decomposition (SVD) to identify dominant trajectories of life cycle gene expression variation, performed pairwise comparisons of stage and age differences in gene expression across the life cycle, identified when genes exhibited maximum levels of life cycle gene expression, and assessed population and host cactus effects on gene expression. Life cycle SVD analysis returned four significant components of transcriptional variation, revealing functional enrichment of genes responsible for growth, metabolic function, sensory perception, neural function, translation and ageing. Host cactus effects on female gene expression revealed population- and stage-specific differences, including significant host plant effects on larval metabolism and development, as well as adult neurotransmitter binding and courtship behaviour gene expression levels. In 3- to 6-day-old virgin females, significant upregulation of genes associated with meiosis and oogenesis was accompanied by downregulation of genes associated with somatic maintenance, evidence for a life history trade-off. The transcriptome of D. mojavensis reared in natural environments throughout its life cycle revealed core developmental transitions and genome-wide influences on life history variation in natural populations.


Assuntos
Drosophila/genética , Meio Ambiente , Estágios do Ciclo de Vida/genética , Transcriptoma , Animais , Cactaceae , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Larva/genética , México , Dados de Sequência Molecular , Análise de Sequência de DNA
3.
Mol Ecol ; 22(10): 2698-715, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23505972

RESUMO

We used whole-transcriptome microarrays to assess changes in gene expression and monitored mortality rates and epicuticular hydrocarbons (CHCs) in response to desiccation stress in four natural populations of Drosophila mojavensis from Baja California and mainland Mexico. Desiccation had the greatest effect on gene expression, followed by biogeographical variation at regional and population levels. Genes involved in environmental sensing and cuticular structure were up-regulated in dry conditions, while genes involved in transcription itself were down-regulated. Flies from Baja California had higher expression of reproductive and mitochondrial genes, suggesting that these populations have greater fecundity and higher metabolic rates. Host plant differences had a surprisingly minor effect on the transcriptome. In most cases, desiccation-caused mortality was greater in flies reared on fermenting cactus tissues than that on laboratory media. Water content of adult females and males was significantly different and was lower in Baja California males. Different groups of CHCs simultaneously increased and decreased in amounts due to desiccation exposure of 9 and 18 h and were population-specific and dependent on larval rearing substrates. Overall, we observed that changes in gene expression involved a coordinated response of behavioural, cuticular and metabolic genes. Together with differential expression of cuticular hydrocarbons, this study revealed some of the mechanisms that have allowed D. mojavensis to exploit its harsh desert conditions. Certainly, for D. mojavensis that uses different host plants, population-level understanding of responses to stressors associated with future climate change in desert regions must be evaluated across geographical and local ecological scales.


Assuntos
Drosophila/genética , Regulação da Expressão Gênica/fisiologia , Hidrocarbonetos/metabolismo , Fenótipo , Análise de Variância , Animais , Peso Corporal , Biologia Computacional , Desidratação , Clima Desértico , Drosophila/metabolismo , Drosophila/fisiologia , Feminino , Fertilidade/genética , Perfilação da Expressão Gênica , Masculino , México , Análise em Microsséries , Anotação de Sequência Molecular , Mortalidade , Especificidade da Espécie , Fatores de Tempo
4.
BMC Evol Biol ; 11: 179, 2011 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-21699713

RESUMO

BACKGROUND: We characterized variation and chemical composition of epicuticular hydrocarbons (CHCs) in the seven species of the Drosophila buzzatii cluster with gas chromatography/mass spectrometry. Despite the critical role of CHCs in providing resistance to desiccation and involvement in communication, such as courtship behavior, mating, and aggregation, few studies have investigated how CHC profiles evolve within and between species in a phylogenetic context. We analyzed quantitative differences in CHC profiles in populations of the D. buzzatii species cluster in order to assess the concordance of CHC differentiation with species divergence. RESULTS: Thirty-six CHC components were scored in single fly extracts with carbon chain lengths ranging from C29 to C39, including methyl-branched alkanes, n-alkenes, and alkadienes. Multivariate analysis of variance revealed that CHC amounts were significantly different among all species and canonical discriminant function (CDF) analysis resolved all species into distinct, non-overlapping groups. Significant intraspecific variation was found in different populations of D. serido suggesting that this taxon is comprised of at least two species. We summarized CHC variation using CDF analysis and mapped the first five CHC canonical variates (CVs) onto an independently derived period (per) gene + chromosome inversion + mtDNA COI gene for each sex. We found that the COI sequences were not phylogenetically informative due to introgression between some species, so only per + inversion data were used. Positive phylogenetic signal was observed mainly for CV1 when parsimony methods and the test for serial independence (TFSI) were used. These results changed when no outgroup species were included in the analysis and phylogenetic signal was then observed for female CV3 and/or CV4 and male CV4 and CV5. Finally, removal of divergent populations of D. serido significantly increased the amount of phylogenetic signal as up to four out of five CVs then displayed positive phylogenetic signal. CONCLUSIONS: CHCs were conserved among species while quantitative differences in CHC profiles between populations and species were statistically significant. Most CHCs were species-, population-, and sex-specific. Mapping CHCs onto an independently derived phylogeny revealed that a significant portion of CHC variation was explained by species' systematic affinities indicating phylogenetic conservatism in the evolution of these hydrocarbon arrays, presumptive waterproofing compounds and courtship signals as in many other drosophilid species.


Assuntos
Exoesqueleto/química , Drosophila/química , Drosophila/classificação , Hidrocarbonetos/química , Filogenia , Exoesqueleto/metabolismo , Animais , Evolução Biológica , Drosophila/genética , Drosophila/metabolismo , Feminino , Hidrocarbonetos/metabolismo , Masculino , Dados de Sequência Molecular , Estrutura Molecular , Especificidade da Espécie
5.
Ecol Evol ; 7(2): 619-637, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28116058

RESUMO

We assessed the effects of temperature differences on gene expression using whole-transcriptome microarrays and cuticular hydrocarbon variation in populations of cactophilic Drosophila mojavensis. Four populations from Baja California and mainland Mexico and Arizona were each reared on two different host cacti, reared to sexual maturity on laboratory media, and adults were exposed for 12 hr to 15, 25, or 35°C. Temperature differences influenced the expression of 3,294 genes, while population differences and host plants affected >2,400 each in adult flies. Enriched, functionally related groups of genes whose expression changed at high temperatures included heat response genes, as well as genes affecting chromatin structure. Gene expression differences between mainland and peninsular populations included genes involved in metabolism of secondary compounds, mitochondrial activity, and tRNA synthases. Flies reared on the ancestral host plant, pitaya agria cactus, showed upregulation of genes involved in metabolism, while flies reared on organ pipe cactus had higher expression of DNA repair and chromatin remodeling genes. Population × environment (G × E) interactions had widespread effects on the transcriptome where population × temperature interactions affected the expression of >5,000 orthologs, and there were >4,000 orthologs that showed temperature × host plant interactions. Adults exposed to 35°C had lower amounts of most cuticular hydrocarbons than those exposed to 15 or 25°C, including abundant unsaturated alkadienes. For insects adapted to different host plants and climatic regimes, our results suggest that temperature shifts associated with climate change have large and significant effects on transcriptomes of genetically differentiated natural populations.

6.
Ecol Evol ; 4(11): 2033-45, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25360246

RESUMO

Analysis of sexual selection and sexual isolation in Drosophila mojavensis and its relatives has revealed a pervasive role of rearing substrates on adult courtship behavior when flies were reared on fermenting cactus in preadult stages. Here, we assessed expression of contact pheromones comprised of epicuticular hydrocarbons (CHCs) from eclosion to 28 days of age in adults from two populations reared on fermenting tissues of two host cacti over the entire life cycle. Flies were never exposed to laboratory food and showed significant reductions in average CHC amounts consistent with CHCs of wild-caught flies. Overall, total hydrocarbon amounts increased from eclosion to 14-18 days, well past age at sexual maturity, and then declined in older flies. Most flies did not survive past 4 weeks. Baja California and mainland populations showed significantly different age-specific CHC profiles where Baja adults showed far less age-specific changes in CHC expression. Adults from populations reared on the host cactus typically used in nature expressed more CHCs than on the alternate host. MANCOVA with age as the covariate for the first six CHC principal components showed extensive differences in CHC composition due to age, population, cactus, sex, and age × population, age × sex, and age × cactus interactions. Thus, understanding variation in CHC composition as adult D. mojavensis age requires information about population and host plant differences, with potential influences on patterns of mate choice, sexual selection, and sexual isolation, and ultimately how these pheromones are expressed in natural populations. Studies of drosophilid aging in the wild are badly needed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA