Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Glycobiology ; 27(6): 582-592, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27986834

RESUMO

Galactoxylomannans (GalXMs) are a mixture of neutral and acidic capsular polysaccharides produced by the opportunistic fungus Cryptococcus neoformans that exhibit potent suppressive effects on the host immune system. Previous studies describing the chemical structure of C. neoformans GalXMs have reported species without O-acetyl substituents. Herein we describe that C. neoformans grown in capsule-inducing medium produces highly O-acetylated GalXMs. The location of the O-acetyl groups was determined by nuclear magnetic resonance (NMR) spectroscopy. In the neutral GalXM (NGalXM), 80% of 3-linked mannose (α-Manp) residues present in side chains are acetylated at the O-2 position. In the acidic GalXM also termed glucuronoxylomannogalactan (GXMGal), 85% of the 3-linked α-Manp residues are acetylated either in the O-2 (75%) or in the O-6 (25%) position, but O-acetyl groups are not present at both positions simultaneously. In addition, NMR spectroscopy and methylation analysis showed that ß-galactofuranose (ß-Galf) units are linked to O-2 and O-3 positions of nonbranched α-galactopyranose (α-Galp) units present in the GalXMs backbone chain. These findings highlight new structural features of C. neoformans GalXMs. Among these features, the high degree of O-acetylation is of particular interest, since O-acetyl group-containing polysaccharides are known to possess a range of immunobiological activities.


Assuntos
Cryptococcus neoformans/química , Polissacarídeos Fúngicos/química , Polissacarídeos/química
2.
Carbohydr Res ; 475: 1-10, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30742969

RESUMO

Glucuronoxylomannogalactans (GXMGals) are characteristic capsular polysaccharides produced by the opportunistic fungus C. neoformans, which are implicated in cryptococcal virulence, via impairment of the host immune response. We determined for the first time the structure of a lipoglucuronomannogalactan (LGMGal), isolated from the surface of a mutant C. neoformans carrying a deletion in the UDP-GlcA decarboxylase gene. Monosaccharide composition and methylation analyses, as well as nuclear magnetic resonance spectroscopy were employed in discerning the structure. Our results show that the polysaccharide structure of the LGMGal differs from GXMGal by the absence of xylose and 2-O-acetylated mannose residues. LGMGal consists of a galactan main chain -[-6-α-Gal-]-, where every second Gal residue is substituted at O-3 with an oligosaccharide α-Man6OAc-3-α-Man-4-(ß-GlcA-3)-ß-Gal-; components in italic being non-stoichiometric. The substitution rate of ß-Galp units by GlcpA is 35%. Additionally, we determined that the glycolipid anchor of the LGMGal is based on an myo-inositol phosphoceramide composed of C18-phytosphingosine and monohydroxylated lignoceric acid (2OHC24:0 fatty acid).


Assuntos
Parede Celular/química , Cryptococcus neoformans/química , Cryptococcus neoformans/citologia , Polissacarídeos/isolamento & purificação , Acetilação , Ressonância Magnética Nuclear Biomolecular , Polissacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA