Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207740

RESUMO

In this study, formaldehyde-free bioresin adhesives were synthesised from lignin and tannin, which were obtained from softwood bark. The extraction was done via organosolv treatment and hot water extraction, respectively. A non-volatile, non-toxic aldehyde, glyoxal, was used as a substitute for formaldehyde in order to modify the chemical structure of both the lignin and tannin. The glyoxal modification reaction was confirmed by ATR-FTIR spectroscopy. Three different resin formulations were prepared using modified lignin along with the modified tannin. The thermal properties of the modified lignin, tannin, and the bioresins were assessed by DSC and TGA. When the bioresins were cured at a high temperature (200 °C) by compression moulding, they exhibited higher thermal stability as well as an enhanced degree of cross-linking compared to the low temperature-cured bioresins. The thermal properties of the resins were strongly affected by the compositions of the resins as well as the curing temperatures.


Assuntos
Lignina/química , Picea/química , Casca de Planta/química , Resinas Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Taninos/química , Adesivos/química , Glioxal/química , Química Verde/instrumentação , Química Verde/métodos , Temperatura Alta , Madeira/química
2.
BMC Bioinformatics ; 15: 413, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25511422

RESUMO

BACKGROUND: Identification of individual components in complex mixtures is an important and sometimes daunting task in several research areas like metabolomics and natural product studies. NMR spectroscopy is an excellent technique for analysis of mixtures of organic compounds and gives a detailed chemical fingerprint of most individual components above the detection limit. For the identification of individual metabolites in metabolomics, correlation or covariance between peaks in (1)H NMR spectra has previously been successfully employed. Similar correlation of 2D (1)H-(13)C Heteronuclear Single Quantum Correlation spectra was recently applied to investigate the structure of heparine. In this paper, we demonstrate how a similar approach can be used to identify metabolites in human biofluids (post-prostatic palpation urine). RESULTS: From 50 (1)H-(13)C Heteronuclear Single Quantum Correlation spectra, 23 correlation plots resembling pure metabolites were constructed. The identities of these metabolites were confirmed by comparing the correlation plots with reported NMR data, mostly from the Human Metabolome Database. CONCLUSIONS: Correlation plots prepared by statistically correlating (1)H-(13)C Heteronuclear Single Quantum Correlation spectra from human biofluids provide unambiguous identification of metabolites. The correlation plots highlight cross-peaks belonging to each individual compound, not limited by long-range magnetization transfer as conventional NMR experiments.


Assuntos
Isótopos de Carbono/análise , Bases de Dados de Compostos Químicos , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Próstata/patologia , Urinálise/métodos , Humanos , Masculino , Palpação , Próstata/metabolismo
3.
Proc Natl Acad Sci U S A ; 106(51): 21619-24, 2009 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-19966220

RESUMO

An increasing number of protein structures are found to encompass multiple folding nuclei, allowing their structures to be formed by several competing pathways. A typical example is the ribosomal protein S6, which comprises two folding nuclei (sigma1 and sigma2) defining two competing pathways in the folding energy landscape: sigma1 --> sigma2 and sigma2 --> sigma1. The balance between the two pathways, and thus the order of folding events, is easily controlled by circular permutation. In this study, we make use of this ability to manipulate the folding pathway to demonstrate that the dynamic motions of the S6 structure are independent of how the protein folds. The HD-exchange protection factors remain the same upon complete reversal of the folding order. The phenomenon arises because the HD-exchange motions and the high-energy excitations controlling the folding pathway occur at separated free-energy levels: the Boltzmann distribution of unproductive unfolding attempts samples all unfolding channels in parallel, even those that end up in excessively high barriers. Accordingly, the findings provide a simple rationale for how to interpret native-state dynamics without the need to invoke fluctuations off the normal unfolding reaction coordinate.


Assuntos
Dobramento de Proteína , Proteína S6 Ribossômica/química , Modelos Moleculares
4.
NanoImpact ; 24: 100357, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-35559816

RESUMO

Nanocomposites, formed by incorporating nanoparticles into a matrix of standard materials, are increasing on the market. Little focus has been directed towards safe disposal and recycling of these new materials even though the disposal has been identified as a phase of the products' life cycle with a high risk of uncontrolled emissions of nanomaterials. In this study, we investigate if the carbon nanotubes (CNTs), when used as a filler in two types of polymers, are fully destructed in a pilot-scale combustion unit designed to mimic the combustion under waste incineration. The two polymer nanocomposites studied, polycarbonate (PC) with CNT and high-density polyethylene (HDPE) with CNT, were incinerated at two temperatures where the lower temperature just about fulfilled the European waste incineration directive while the upper was chosen to be on the safe side of fulfilling the directive. Particles in the flue gas were sampled and analysed with online and offline instrumentation along with samples of the bottom ash. CNTs could be identified in the flue gas in all experiments, although present to a greater extent when the CNTs were introduced in PC as compared to in HDPE. In the case of using PC as polymer matrix, CNTs were identified in 3-10% of the analysed SEM images while for HDPE in only ~0.5% of the images. In the case of PC, the presence of CNTs decreased with increasing bed temperature (from 10% to 3% of the images). The CNTs identified were always in bundles, often coated with remnants of the polymer, forming particles of ~1-4 µm in diameter. No CNTs were identified in the bottom ash, likely explained by the difference in time when the bottom ash and fly ash are exposed to high temperatures (~hours compared to seconds) in the pilot facility. The results suggest that the residence time of the fly ash in the combustion zone is not long enough to allow full oxidation of the CNTs. Thus, the current regulation on waste incineration (requiring a residence time of the flue gas >850 °C during at least 2 s) may not be enough to obtain complete destruction of CNTs in polymer composites. Since several types of CNTs are known to be toxic, we stress the need for further investigation of the fate and toxicity of CNTs in waste treatment processes.


Assuntos
Nanocompostos , Nanotubos de Carbono , Carbonatos , Cinza de Carvão/análise , Incineração , Polietileno/análise , Polímeros
5.
Protein Sci ; 19(1): 183-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19937661

RESUMO

The ribosomal protein S6 from Thermus thermophilus has served as a model system for the study of protein folding, especially for understanding the effects of circular permutations of secondary structure elements. This study presents the structure of a permutant protein, the 96-residue P(54-55), and the structure of its 101-residue parent protein S6(wt) in solution. The data also characterizes the effects of circular permutation on the backbone dynamics of S6. Consistent with crystallographic data on S6(wt), the overall solution structures of both P(54-55) and S6(wt) show a beta-sheet of four antiparallel beta-strands with two alpha-helices packed on one side of the sheet. In clear contrast to the crystal data, however, the solution structure of S6(wt) reveals a disordered loop in the region between beta-strands 2 and 3 (Leu43-Phe60) instead of a well-ordered stretch and associated hydrophobic mini-core observed in the crystal structure. Moreover, the data for P(54-55) show that the joined wild-type N- and C-terminals form a dynamically robust stretch with a hairpin structure that complies with the in silico design. Taken together, the results explain why the loop region of the S6(wt) structure is relatively insensitive to mutational perturbations, and why P(54-55) is more stable than S6(wt): the permutant incision at Lys54-Asp55 is energetically neutral by being located in an already disordered loop whereas the new hairpin between the wild-type N- and C-termini is stabilizing.


Assuntos
Proteína S6 Ribossômica/química , Proteínas de Bactérias/química , Simulação de Dinâmica Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular/métodos , Dobramento de Proteína , Termodinâmica , Thermus thermophilus/química
6.
Mol Plant ; 2(5): 933-42, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19825670

RESUMO

2D 13C-(1)H HSQC NMR spectroscopy of acetylated cell walls in solution gives a detailed fingerprint that can be used to assess the chemical composition of the complete wall without extensive degradation. We demonstrate how multivariate analysis of such spectra can be used to visualize cell wall changes between sample types as high-resolution 2D NMR loading spectra. Changes in composition and structure for both lignin and polysaccharides can subsequently be interpreted on a molecular level. The multivariate approach alleviates problems associated with peak picking of overlapping peaks, and it allows the deduction of the relative importance of each peak for sample discrimination. As a first proof of concept, we compare Populus tension wood to normal wood. All well established differences in cellulose, hemicellulose, and lignin compositions between these wood types were readily detected, confirming the reliability of the multivariate approach. In a second example, wood from transgenic Populus modified in their degree of pectin methylesterification was compared to that of wild-type trees. We show that differences in both lignin and polysaccharide composition that are difficult to detect with traditional spectral analysis and that could not be a priori predicted were revealed by the multivariate approach. 2D NMR of dissolved cell wall samples combined with multivariate analysis constitutes a novel approach in cell wall analysis and provides a new tool that will benefit cell wall research.


Assuntos
Parede Celular/química , Lignina/química , Polissacarídeos/química , Populus/química , Madeira/química , Parede Celular/metabolismo , Análise Multivariada , Ressonância Magnética Nuclear Biomolecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA