Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
PLoS Pathog ; 13(7): e1006444, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28683091

RESUMO

Group A Streptococcus (GAS) is deleterious pathogenic bacteria whose interaction with blood vessels leads to life-threatening bacteremia. Although xenophagy, a special form of autophagy, eliminates invading GAS in epithelial cells, we found that GAS could survive and multiply in endothelial cells. Endothelial cells were competent in starvation-induced autophagy, but failed to form double-membrane structures surrounding GAS, an essential step in xenophagy. This deficiency stemmed from reduced recruitment of ubiquitin and several core autophagy proteins in endothelial cells, as demonstrated by the fact that it could be rescued by exogenous coating of GAS with ubiquitin. The defect was associated with reduced NO-mediated ubiquitin signaling. Therefore, we propose that the lack of efficient clearance of GAS in endothelial cells is caused by their intrinsic inability to target GAS with ubiquitin to promote autophagosome biogenesis for xenophagy.


Assuntos
Autofagia , Células Endoteliais/citologia , Infecções Estreptocócicas/fisiopatologia , Streptococcus pyogenes/fisiologia , Linhagem Celular , Células Endoteliais/metabolismo , Células Endoteliais/microbiologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Fagossomos/metabolismo , Fagossomos/microbiologia , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/genética , Ubiquitina/metabolismo
2.
EMBO J ; 32(17): 2336-47, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23921551

RESUMO

Diverse causes, including pathogenic invasion or the uptake of mineral crystals such as silica and monosodium urate (MSU), threaten cells with lysosomal rupture, which can lead to oxidative stress, inflammation, and apoptosis or necrosis. Here, we demonstrate that lysosomes are selectively sequestered by autophagy, when damaged by MSU, silica, or the lysosomotropic reagent L-Leucyl-L-leucine methyl ester (LLOMe). Autophagic machinery is recruited only on damaged lysosomes, which are then engulfed by autophagosomes. In an autophagy-dependent manner, low pH and degradation capacity of damaged lysosomes are recovered. Under conditions of lysosomal damage, loss of autophagy causes inhibition of lysosomal biogenesis in vitro and deterioration of acute kidney injury in vivo. Thus, we propose that sequestration of damaged lysosomes by autophagy is indispensable for cellular and tissue homeostasis.


Assuntos
Autofagia/fisiologia , Túbulos Renais/fisiopatologia , Lisossomos/metabolismo , Animais , Proteína 7 Relacionada à Autofagia , Linhagem Celular/efeitos dos fármacos , Dipeptídeos/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Hiperuricemia/fisiopatologia , Lisossomos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Células NIH 3T3/efeitos dos fármacos , Fagossomos/fisiologia , Ácido Úrico/farmacologia
3.
Nature ; 456(7219): 264-8, 2008 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-18849965

RESUMO

Systems for protein degradation are essential for tight control of the inflammatory immune response. Autophagy, a bulk degradation system that delivers cytoplasmic constituents into autolysosomes, controls degradation of long-lived proteins, insoluble protein aggregates and invading microbes, and is suggested to be involved in the regulation of inflammation. However, the mechanism underlying the regulation of inflammatory response by autophagy is poorly understood. Here we show that Atg16L1 (autophagy-related 16-like 1), which is implicated in Crohn's disease, regulates endotoxin-induced inflammasome activation in mice. Atg16L1-deficiency disrupts the recruitment of the Atg12-Atg5 conjugate to the isolation membrane, resulting in a loss of microtubule-associated protein 1 light chain 3 (LC3) conjugation to phosphatidylethanolamine. Consequently, both autophagosome formation and degradation of long-lived proteins are severely impaired in Atg16L1-deficient cells. Following stimulation with lipopolysaccharide, a ligand for Toll-like receptor 4 (refs 8, 9), Atg16L1-deficient macrophages produce high amounts of the inflammatory cytokines IL-1beta and IL-18. In lipopolysaccharide-stimulated macrophages, Atg16L1-deficiency causes Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF)-dependent activation of caspase-1, leading to increased production of IL-1beta. Mice lacking Atg16L1 in haematopoietic cells are highly susceptible to dextran sulphate sodium-induced acute colitis, which is alleviated by injection of anti-IL-1beta and IL-18 antibodies, indicating the importance of Atg16L1 in the suppression of intestinal inflammation. These results demonstrate that Atg16L1 is an essential component of the autophagic machinery responsible for control of the endotoxin-induced inflammatory immune response.


Assuntos
Autofagia/genética , Proteínas de Transporte/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-1beta/biossíntese , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Proteínas Relacionadas à Autofagia , Quimera , Colite/induzido quimicamente , Colite/imunologia , Sulfato de Dextrana/farmacologia , Feminino , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação
4.
Lab Chip ; 23(4): 609-623, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36633172

RESUMO

Three-dimensional (3D) cell culture, which provides an in vivo-like environment in vitro unlike the conventional two-dimensional (2D) cell culture, has attracted much attention from researchers. Although various 3D cell culture methods have been developed, information on a method using inorganic nanoclay is scant. Here, we report that hectorite, an inorganic layered silicate, can be used as an auxiliary material for 3D cell culture. Human colon cancer cell lines cultured in a medium containing 0.01% synthetic hectorite spontaneously formed 3D spheroids in an adherent plate. Morphologically, these spheroids were more dispersed in all directions than control spheroids generated in an ultralow adherent plate. Microarray analysis showed that FGF19, TGM2, and SERPINA3, whose expression is reportedly increased in colon cancer tissues and is related to tumorigenesis or metastasis, were upregulated in HT-29 spheroids formed using synthetic hectorite compared with those in control spheroids. Gene ontology analysis revealed upregulation of genes associated with morphogenesis, cytoskeleton, extracellular matrix, cellular uptake and secretion, signaling pathways, and gene expression regulation. Moreover, fluorescence-labeled hectorite particles were localized in the cytoplasm of individual cells in spheroids. These results suggest that the synthetic hectorite modified the physiological state of and gene expression within the cells, triggering spheroid formation with malignant characteristics. Our findings highlight a novel application of synthetic hectorite for 3D cell culture.


Assuntos
Neoplasias Colorretais , Esferoides Celulares , Humanos , Técnicas de Cultura de Células/métodos , Silicatos/farmacologia
5.
Sci Rep ; 13(1): 11610, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463955

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes severe acute respiratory symptoms in humans. Controlling the coronavirus disease pandemic is a worldwide priority. The number of SARS-CoV-2 studies has dramatically increased, and the requirement for analytical tools is higher than ever. Here, we propose monolayered-intestinal epithelial cells (IECs) derived from human induced pluripotent stem cells (iPSCs) instead of three-dimensional cultured intestinal organoids as a suitable tool to study SARS-CoV-2 infection. Differentiated IEC monolayers express high levels of angiotensin-converting enzyme 2 and transmembrane protease serine 2 (TMPRSS2), host factors essential for SARS-CoV-2 infection. SARS-CoV-2 efficiently grows in IEC monolayers. Using this propagation system, we confirm that TMPRSS2 inhibition blocked SARS-CoV-2 infection in IECs. Hence, our iPSC-derived IEC monolayers are suitable for SARS-CoV-2 research under physiologically relevant conditions.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Humanos , SARS-CoV-2 , Células Epiteliais , Intestinos
6.
Sci Signal ; 16(803): eade3599, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37725663

RESUMO

RUBCN (also known as Rubicon) was originally identified as a negative regulator of autophagy, a process by which cells degrade and recycle damaged components or organelles and that requires the activity of the class III PI3K VPS34 and the mTORC1 protein complex. Here, we characterized the role of a shorter isoform, RUBCN100, as an autophagy-promoting factor in B cells. RUBCN100 was translated from alternative translation initiation sites and lacked the RUN domain of the longer, previously characterized RUBCN130 isoform. Specific deficiency of RUBCN130 in B cells enhanced autophagy, which promoted memory B cell generation. In contrast to RUBCN130, which is localized in late endosomes and lysosomes and suppresses the enzymatic activity of VPS34, an effect thought to mediated by its RUN domain, RUBCN100 was preferentially located in early endosomes and enhanced VPS34 activity, presumably because of the absence of the RUN domain. Furthermore, RUBCN100, but not RUBCN130, enhanced autophagy and suppressed mTORC1 activation. Our findings reveal that the opposing roles of two RUBCN isoforms are critical for autophagy regulation and memory B cell differentiation.


Assuntos
Linfócitos B , Células B de Memória , Autofagia , Isoformas de Proteínas/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética
7.
Traffic ; 11(4): 468-78, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20059746

RESUMO

Autophagy is a catabolic process that delivers cytoplasmic material to the lysosome for degradation. The mechanisms regulating autophagosome formation and size remain unclear. Here, we show that autophagosome formation was triggered by the overexpression of a dominant-negative inactive mutant of Myotubularin-related phosphatase 3 (MTMR3). Mutant MTMR3 partially localized to autophagosomes, and PtdIns3P and two autophagy-related PtdIns3P-binding proteins, GFP-DFCP1 and GFP-WIPI-1alpha (WIPI49/Atg18), accumulated at sites of autophagosome formation. Knock-down of MTMR3 increased autophagosome formation, and overexpression of wild-type MTMR3 led to significantly smaller nascent autophagosomes and a net reduction in autophagic activity. These results indicate that autophagy initiation depends on the balance between PI 3-kinase and PI 3-phosphatase activity. Local levels of PtdIns3P at the site of autophagosome formation determine autophagy initiation and the size of the autophagosome membrane structure.


Assuntos
Autofagia/fisiologia , Fosfatos de Fosfatidilinositol/fisiologia , Proteínas Tirosina Fosfatases não Receptoras/fisiologia , Autofagia/genética , Linhagem Celular , Humanos , Lisossomos/enzimologia , Lisossomos/fisiologia , Fagossomos/enzimologia , Fagossomos/fisiologia , Fosfatidilinositol 3-Quinases/análise , Fosfatidilinositol 3-Quinases/fisiologia , Fosfatos de Fosfatidilinositol/análise , Proteínas Tirosina Fosfatases não Receptoras/análise , Proteínas Tirosina Fosfatases não Receptoras/genética
8.
Proc Natl Acad Sci U S A ; 106(49): 20842-6, 2009 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-19926846

RESUMO

Microbial nucleic acids are critical for the induction of innate immune responses, a host defense mechanism against infection by microbes. Recent studies have indicated that double-stranded DNA (dsDNA) induces potent innate immune responses via the induction of type I IFN (IFN) and IFN-inducible genes. However, the regulatory mechanisms underlying dsDNA-triggered signaling are not fully understood. Here we show that the translocation and assembly of the essential signal transducers, stimulator of IFN genes (STING) and TANK-binding kinase 1 (TBK1), are required for dsDNA-triggered innate immune responses. After sensing dsDNA, STING moves from the endoplasmic reticulum (ER) to the Golgi apparatus and finally reaches the cytoplasmic punctate structures to assemble with TBK1. The addition of an ER-retention signal to the C terminus of STING dampens its ability to induce antiviral responses. We also show that STING co-localizes with the autophagy proteins, microtubule-associated protein 1 light chain 3 (LC3) and autophagy-related gene 9a (Atg9a), after dsDNA stimulation. The loss of Atg9a, but not that of another autophagy-related gene (Atg7), greatly enhances the assembly of STING and TBK1 by dsDNA, leading to aberrant activation of the innate immune response. Hence Atg9a functions as a regulator of innate immunity following dsDNA stimulation as well as an essential autophagy protein. These results demonstrate that dynamic membrane traffic mediates the sequential translocation and assembly of STING, both of which are essential processes required for maximal activation of the innate immune response triggered by dsDNA.


Assuntos
DNA/farmacologia , Imunidade Inata/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Animais , Autofagia/efeitos dos fármacos , Proteínas Relacionadas à Autofagia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Embrião de Mamíferos/citologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteínas de Transporte Vesicular
9.
mBio ; 13(4): e0123322, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35862783

RESUMO

Group A Streptococcus (GAS), a deleterious human-pathogenic bacterium, causes life-threatening diseases such as sepsis and necrotic fasciitis. We recently reported that GAS survives and replicates within blood vessel endothelial cells because these cells are intrinsically defective in xenophagy. Because blood vessel endothelial cells are relatively germfree environments, specific stimulation may be required to sufficiently induce xenophagy. Here, we explored how vascular endothelial growth factor (VEGF) promoted xenophagy and lysosomal activity in endothelial cells. These effects were achieved by amplifying the activation of TFEB, a transcriptional factor crucial for lysosome/autophagy biogenesis, via cAMP-mediated calcium release. In a mouse model of local infection with GAS, the VEGF level was significantly elevated at the infection site. Interestingly, low serum VEGF levels were found in a mouse model of invasive bacteremia and in patients with severe GAS-induced sepsis. Moreover, the administration of VEGF improved the survival of GAS-infected mice. We propose a novel theory regarding GAS infection in endothelial cells, wherein VEGF concentrations in the systemic circulation play a critical role. IMPORTANCE Sepsis caused by Streptococcus pyogenes is a life-threatening condition. Blood vessel endothelial cells should serve as a barrier to infection, although we recently reported that endothelial cells allow intracellular GAS proliferation due to defective xenophagy. In this study, we revealed that administration of VEGF augmented both xenophagy and lysosomal activity in these cells, leading to the efficient killing of intracellular GAS. By comparison, the opposite relationship was observed in vivo, as low serum VEGF concentrations were accompanied by high-severity sepsis in both a mouse model and in human patients. Administration of VEGF reduced mortality in the GAS sepsis model. Based on these findings, we hypothesize that during acute infection, strong VEGF stimulation boosts the intracellular defense system of the endothelium to provide a stronger blood vessel barrier, thereby helping to prevent bacterial dissemination.


Assuntos
Sepse , Streptococcus pyogenes , Animais , Autofagia , Células Endoteliais/microbiologia , Humanos , Lisossomos , Camundongos , Streptococcus pyogenes/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
J Virol ; 83(20): 10427-36, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19656872

RESUMO

Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a component of the replication complex consisting of several host and viral proteins. We have previously reported that human butyrate-induced transcript 1 (hB-ind1) recruits heat shock protein 90 (Hsp90) and FK506-binding protein 8 (FKBP8) to the replication complex through interaction with NS5A. To gain more insights into the biological functions of hB-ind1 in HCV replication, we assessed the potential cochaperone-like activity of hB-ind1, because it has significant homology with cochaperone p23, which regulates Hsp90 chaperone activity. The chimeric p23 in which the cochaperone domain was replaced with the p23-like domain of hB-ind1 exhibited cochaperone activity comparable to that of the authentic p23, inhibiting the glucocorticoid receptor signaling in an Hsp90-dependent manner. Conversely, the chimeric hB-ind1 in which the p23-like domain was replaced with the cochaperone domain of p23 resulted in the same level of recovery of HCV propagation as seen in the authentic hB-ind1 in cells with knockdown of the endogenous hB-ind1. Immunofluorescence analyses revealed that hB-ind1 was colocalized with NS5A, FKBP8, and double-stranded RNA in the HCV replicon cells. HCV replicon cells exhibited a more potent unfolded-protein response (UPR) than the parental and the cured cells upon treatment with an inhibitor for Hsp90. These results suggest that an Hsp90-dependent chaperone pathway incorporating hB-ind1 is involved in protein folding in the membranous web for the circumvention of the UPR and that it facilitates HCV replication.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Hepacivirus/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Replicação Viral/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP90/genética , Hepacivirus/efeitos dos fármacos , Hepacivirus/metabolismo , Hepacivirus/patogenicidade , Humanos , Hidroliases , Peptídeos e Proteínas de Sinalização Intracelular/genética , Rim/citologia , Rim/virologia , Fígado/citologia , Fígado/virologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/farmacologia , Dobramento de Proteína , Replicação Viral/efeitos dos fármacos
11.
Front Microbiol ; 11: 117, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117141

RESUMO

Group A streptococcus (GAS) is a versatile pathogen that causes a wide spectrum of diseases in humans. Invading host cells is a known strategy for GAS to avoid antibiotic killing and immune recognition. However, the underlying mechanisms of GAS resistance to intracellular killing need to be explored. Endothelial HMEC-1 cells were infected with GAS, methicillin-resistant Staphylococcus aureus (MRSA) and Salmonella Typhimurium under nicotinamide (NAM)-supplemented conditions. The intracellular NAD+ level and cell viability were respectively measured by NAD+ quantification kit and protease-based cytotoxicity assay. Moreover, the intracellular bacteria were analyzed by colony-forming assay, transmission electron microscopy, and confocal microscopy. We found that supplementation with exogenous nicotinamide during infection significantly inhibited the growth of intracellular GAS in endothelial cells. Moreover, the NAD+ content and NAD+/NADH ratio of GAS-infected endothelial cells were dramatically increased, whereas the cell cytotoxicity was decreased by exogenous nicotinamide treatment. After knockdown of the autophagy-related ATG9A, the intracellular bacterial load was increased in nicotinamide-treated endothelial cells. The results of Western blot and transmission electron microscopy also revealed that cells treated with nicotinamide can increase autophagy-associated LC3 conversion and double-membrane formation during GAS infection. Confocal microscopy images further showed that more GAS-containing vacuoles were colocalized with lysosome under nicotinamide-supplemented conditions than without nicotinamide treatment. In contrast to GAS, supplementation with exogenous nicotinamide did not effectively inhibit the growth of MRSA or S. Typhimurium in endothelial cells. These results indicate that intracellular NAD+ homeostasis is crucial for controlling intracellular GAS infection in endothelial cells. In addition, nicotinamide may be a potential new therapeutic agent to overcome persistent infections of GAS.

12.
J Cell Biol ; 219(8)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32492081

RESUMO

In macroautophagy, membrane structures called autophagosomes engulf substrates and deliver them for lysosomal degradation. Autophagosomes enwrap a variety of targets with diverse sizes, from portions of cytosol to larger organelles. However, the mechanism by which autophagosome size is controlled remains elusive. We characterized a novel ER membrane protein, ERdj8, in mammalian cells. ERdj8 localizes to a meshwork-like ER subdomain along with phosphatidylinositol synthase (PIS) and autophagy-related (Atg) proteins. ERdj8 overexpression extended the size of the autophagosome through its DnaJ and TRX domains. ERdj8 ablation resulted in a defect in engulfing larger targets. C. elegans, in which the ERdj8 orthologue dnj-8 was knocked down, could perform autophagy on smaller mitochondria derived from the paternal lineage but not the somatic mitochondria. Thus, ERdj8 may play a critical role in autophagosome formation by providing the capacity to target substrates of diverse sizes for degradation.


Assuntos
Autofagossomos/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Macroautofagia , Animais , Animais Geneticamente Modificados , Autofagossomos/genética , Autofagossomos/ultraestrutura , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase/genética , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase/metabolismo , Células COS , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Chlorocebus aethiops , Retículo Endoplasmático/genética , Retículo Endoplasmático/ultraestrutura , Proteínas de Choque Térmico HSP40/genética , Células HeLa , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura
13.
Infect Immun ; 77(10): 4187-96, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19651865

RESUMO

Porphyromonas gingivalis, a periodontal pathogen, secretes outer membrane vesicles (MVs) that contain major virulence factors, including major fimbriae and proteases termed gingipains, although it is not confirmed whether MVs enter host cells. In this study, we analyzed the mechanisms involved in the interactions of P. gingivalis MVs with human epithelial cells. Our results showed that MVs swiftly adhered to HeLa and immortalized human gingival epithelial cells in a fimbria-dependent manner and then entered via a lipid raft-dependent endocytic pathway. The intracellular MVs were subsequently routed to early endosome antigen 1-associated compartments and then were sorted to lysosomal compartments within 90 min, suggesting that intracellular MVs were ultimately degraded by the cellular digestive machinery. However, P. gingivalis MVs remained there for over 24 h and significantly induced acidified compartment formation after being taken up by the cellular digestive machinery. In addition, MV entry was shown to be mediated by a novel pathway for transmission of bacterial products into host cells, a Rac1-regulated pinocytic pathway that is independent of caveolin, dynamin, and clathrin. Our findings indicate that P. gingivalis MVs efficiently enter host cells via an endocytic pathway and survive within the endocyte organelles for an extended period, which provides better understanding of the role of MVs in the etiology of periodontitis.


Assuntos
Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Lisossomos/metabolismo , Pinocitose , Porphyromonas gingivalis/patogenicidade , Vesículas Secretórias/metabolismo , Fatores de Virulência/metabolismo , Proteínas de Bactérias/metabolismo , Células Cultivadas , Células Epiteliais/metabolismo , Células HeLa , Humanos , Microscopia Confocal , Microscopia Imunoeletrônica , Porphyromonas gingivalis/metabolismo
14.
J Virol ; 82(7): 3480-9, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18216108

RESUMO

Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) regulates viral replication through its interaction with host and other viral proteins. We have previously shown that FK506-binding protein 8 (FKBP8) binds to NS5A and recruits Hsp90 to form a complex that participates in the replication of HCV. In this study, we examined the biochemical characteristics of the interaction and the intracellular localization of NS5A and FKBP8. Surface plasmon resonance analysis revealed that the dissociation constant of the interaction between the purified FKBP8 and NS5A expressed in bacteria was 82 nM. Mutational analyses of NS5A revealed that a single amino acid residue of Val or Ile at position 121, which is well conserved among all genotypes of HCV, is critical for the specific interaction with FKBP8. Substitution of the Val(121) to Ala drastically impaired the replication of HCV replicon cells, and the drug-resistant replicon cells emerging after drug selection were shown to have reverted to the original arrangement by replacing Ala(121) with Val. Examination of individual fields of the replicon cells by both fluorescence microscopy and electron microscopy (the correlative fluorescence microscopy-electron microscopy technique) revealed that FKBP8 is partially colocalized with NS5A in the cytoplasmic structure known as the membranous web. These results suggest that specific interaction of NS5A with FKBP8 in the cytoplasmic compartment plays a crucial role in the replication of HCV.


Assuntos
Substituição de Aminoácidos , Hepacivirus/fisiologia , Proteínas de Ligação a Tacrolimo/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia , Citoplasma/química , Hepacivirus/genética , Humanos , Cinética , Microscopia Eletrônica , Microscopia de Fluorescência , Mutação de Sentido Incorreto , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Ressonância de Plasmônio de Superfície , Proteínas de Ligação a Tacrolimo/isolamento & purificação , Proteínas não Estruturais Virais/isolamento & purificação , Replicação Viral/genética
15.
Methods Mol Biol ; 1998: 73-92, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31250295

RESUMO

Many enveloped viruses utilize the cellular ESCRT pathway for budding, even flaviviruses, which form viral particles inside replication organelles derived from the endoplasmic reticulum (ER). In this section, we introduce methods for detecting several ESCRT subunit proteins in virus-infected cells by immunofluorescence microscopy and immunoelectron microscopy (immuno-EM). We also introduce a new method; correlative light microscopy and electron microscopy (CLEM), which allows the observation of target structures with both high-resolution EM and fluorescence labeling.


Assuntos
Bioensaio/métodos , Retículo Endoplasmático/ultraestrutura , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Microscopia Eletrônica de Transmissão/métodos , Imagem Molecular/métodos , Animais , Técnicas de Cultura de Células/métodos , Linhagem Celular , Vírus da Dengue/imunologia , Vírus da Encefalite Japonesa (Espécie)/imunologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Complexos Endossomais de Distribuição Requeridos para Transporte/imunologia , Ouro/química , Humanos , Mesocricetus , Nanopartículas Metálicas/química , Microscopia de Fluorescência/métodos , Microscopia Imunoeletrônica/métodos , Coloração e Rotulagem/métodos , Vírion/química
16.
Virus Res ; 272: 197732, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31445103

RESUMO

To visually examine the early phase of chikungunya virus (CHIKV) infection in target cells, we constructed a virus-like particle (VLP) in which the envelope protein E1 is fused with green fluorescent protein (GFP). This chikungunya VLP-GFP (CHIK-VLP-EGFP), purified by density gradient fractionation, was observed as 60-70 nm-dia. particles and was detected as tiny puncta of fluorescence in the cells. CHIK-VLP-EGFP showed binding properties similar to those of the wild-type viruses. Most of the fluorescence signals that had bound on Vero cells disappeared within 30 min at 37 °C, but not in the presence of anti-CHIKV neutralizing serum or an endosomal acidification inhibitor (bafilomycin A1), suggesting that the loss of fluorescence signals is due to the disassembly of the viral envelope following the internalization of CHIK-VLP-EGFP. In addition to these results, the fluorescence signals disappeared in highly susceptible Vero and U251MG cells but not in poorly susceptible A549 cells. Thus, CHIK-VLP-EGFP is a useful tool to examine the effects of the CHIKV neutralizing antibodies and antiviral compounds that are effective in the entry phase of CHIKV.


Assuntos
Febre de Chikungunya/virologia , Vírus Chikungunya/fisiologia , Genes Reporter , Proteínas de Fluorescência Verde/genética , Replicação Viral , Animais , Células Cultivadas , Vírus Chikungunya/ultraestrutura , Chlorocebus aethiops , Expressão Gênica , Vetores Genéticos/genética , Modelos Biológicos , Células Vero , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus
17.
mBio ; 10(5)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575768

RESUMO

Group A streptococcus (GAS) is an important human pathogen which can cause fatal diseases after invasion into the bloodstream. Although antibiotics and immune surveillance are the main defenses against GAS infection, GAS utilizes internalization into cells as a major immune evasion strategy. Our previous findings revealed that light chain 3 (LC3)-associated single membrane GAS-containing vacuoles in endothelial cells are compromised for bacterial clearance due to insufficient acidification after fusion with lysosomes. However, the characteristics and the activation mechanisms of these LC3-positive compartments are still largely unknown. In the present study, we demonstrated that the LC3-positive GAS is surrounded by single membrane and colocalizes with NADPH oxidase 2 (NOX2) complex but without ULK1, which are characteristics of LC3-associated phagocytosis (LAP). Inhibition of NOX2 or reactive oxygen species (ROS) significantly reduces GAS multiplication and enhances autolysosome acidification in endothelial cells through converting LAP to conventional xenophagy, which is revealed by enhancement of ULK1 recruitment, attenuation of p70s6k phosphorylation, and formation of the isolation membrane. We also clarify that the inactivation of mTORC1, which is the initiation signal of autophagy, is inhibited by NOX2- and ROS-activated phosphatidylinositol 3-kinase (PI3K)/AKT and MEK/extracellular signal-regulated kinase (ERK) pathways. In addition, streptolysin O (SLO) of GAS is identified as a crucial inducer of ROS for ß1 integrin-mediated LAP induction. After downregulation of ß1 integrin, GAS multiplication is reduced, accompanied with LAP inhibition and xenophagy induction. These results demonstrate that GAS infection preferentially induces ineffective LAP to evade xenophagic killing in endothelial cells through the SLO/ß1 integrin/NOX2/ROS pathway.IMPORTANCE Our previous reports showed that the LC3-associated GAS-containing single membrane vacuoles are inefficient for bacterial clearance in endothelial cells, which may result in bacteremia. However, the characteristics and the induction mechanisms of these LC3-positive vacuoles are still largely unknown. Here we provide the first evidence that these LC3-positive GAS-containing single membrane compartments appear to be LAPosomes, which are induced by NOX2 and ROS. Through NOX2- and ROS-mediated signaling, GAS preferentially induces LAP and inhibits bacteriostatic xenophagy in endothelial cells. We also provide the first demonstration that ß1 integrin acts as the receptor for LAP induction through GAS-produced SLO stimulation in endothelial cells. Our findings reveal the underlying mechanisms of LAP induction and autophagy evasion for GAS multiplication in endothelial cells.


Assuntos
Células Endoteliais/microbiologia , Macroautofagia , Streptococcus pyogenes/fisiologia , Estreptolisinas/metabolismo , Proteínas de Bactérias/metabolismo , Linhagem Celular , Humanos , Integrina beta1/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , NADPH Oxidase 2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vacúolos/metabolismo
18.
FEMS Microbiol Lett ; 273(1): 96-102, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17559394

RESUMO

Porphyromonas gingivalis expresses several virulence factors such as fimbriae and proteases, termed gingipains, which are enzymes that process precursor fimbriae proteins. Thus, gingipain-null mutants lack mature fimbriae. Membrane vesicle-depleted supernatants (VDS) containing soluble gingipains were prepared as an exogenous gingipain fraction. Precursor proteins were treated with VDS and a fimbriated gingipain-null mutant was successfully generated. Experiments showed that the wild strain adhered to and invaded epithelial cells at a greater level than the fimbriated gingipain-null mutant, while adhesion/invasion was prevented in the presence of fetal calf serum, which inhibits gingipain activity. The findings of this study suggest that gingipains expose cellular cryptic ligands in a proteolytic manner and promote fimbriae binding to epithelial cells.


Assuntos
Adesinas Bacterianas/metabolismo , Cisteína Endopeptidases/metabolismo , Proteínas de Fímbrias/metabolismo , Gengiva/microbiologia , Porphyromonas gingivalis/metabolismo , Processamento de Proteína Pós-Traducional , Adesinas Bacterianas/genética , Aderência Bacteriana/genética , Aderência Bacteriana/fisiologia , Linhagem Celular , Cisteína Endopeptidases/genética , Células Epiteliais/microbiologia , Fímbrias Bacterianas/ultraestrutura , Deleção de Genes , Cisteína Endopeptidases Gingipaínas , Humanos , Microscopia Eletrônica de Transmissão , Porphyromonas gingivalis/genética
19.
Virology ; 510: 165-174, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28738245

RESUMO

Infection with coronavirus rearranges the host cell membrane to assemble a replication/transcription complex in which replication of the viral genome and transcription of viral mRNA occur. Although coexistence of nsp3 and nsp4 is known to cause membrane rearrangement, the mechanisms underlying the interaction of these two proteins remain unclear. We demonstrated that binding of nsp4 with nsp3 is essential for membrane rearrangement and identified amino acid residues in nsp4 responsible for the interaction with nsp3. In addition, we revealed that the nsp3-nsp4 interaction is not sufficient to induce membrane rearrangement, suggesting the participation of other factors such as host proteins. Finally, we showed that loss of the nsp3-nsp4 interaction eliminated viral replication by using an infectious cDNA clone and replicon system of SARS-CoV. These findings provide clues to the mechanism of the replication/transcription complex assembly of SARS-CoV and could reveal an antiviral target for the treatment of betacoronavirus infection.


Assuntos
Substituição de Aminoácidos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Proteínas não Estruturais Virais/genética , Replicação Viral , Análise Mutacional de DNA , Mapeamento de Interação de Proteínas , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética
20.
Stem Cell Res ; 23: 50-56, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28689068

RESUMO

We sought to establish a more efficient technique for induction of inner ear hair cell-like cells (HC-like cells) from embryonic stem cells (ES cells) by using a combination of two previously reported methods; ST2 stromal cell-conditioned medium, known to be favorable for HC-like cell induction (HIST2 method), and ES cells with transfer of the Math1 gene (Math1-ES cells). Math1-ES cells carrying Tet-inducible Math1 were cultured for 14days with doxycycline in conditioned medium from cultures of ST2 stromal cells following formation of 4-day embryoid bodies (EBs). Although each of the previously introduced methods have been reported to induce approximately 20% HC-like cells and 10% HC-like cells in their respective populations in EB outgrowths at the end of the culture periods, the present combined method was able to generate approximately 30% HC-like cells expressing HC-related markers (myosin6, myosin7a, calretinin, α9AchR, Brn3c), which showed remarkable formation of stereocilia-like structures. Analysis of expressions of marker genes specific for cochlear (Lmod3, Emcn) and vestibular (Dnah5, Ptgds) cells indicated that our HIST2 method may lead to induction of cochlear- and vestibular-type cells. In addition, continuous Math1 induction by doxycycline without use of the HIST2 method preferentially induced cochlear markers with negligible effects on vestibular marker induction.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Meios de Cultivo Condicionados/farmacologia , Células Ciliadas Auditivas Internas/citologia , Células-Tronco Embrionárias Murinas/citologia , Transfecção , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores/metabolismo , Linhagem Celular , Células Cultivadas , Cóclea/citologia , Corpos Embrioides/citologia , Corpos Embrioides/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Mecanotransdução Celular , Camundongos , Miosinas/metabolismo , Estereocílios/metabolismo , Células Estromais/metabolismo , Vestíbulo do Labirinto/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA