Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Ecol Biogeogr ; 29(6): 1034-1051, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32612452

RESUMO

AIM: Predictions of plant traits over space and time are increasingly used to improve our understanding of plant community responses to global environmental change. A necessary step forward is to assess the reliability of global trait predictions. In this study, we predict community mean plant traits at the global scale and present a systematic evaluation of their reliability in terms of the accuracy of the models, ecological realism and various sources of uncertainty. LOCATION: Global. TIME PERIOD: Present. MAJOR TAXA STUDIED: Vascular plants. METHODS: We predicted global distributions of community mean specific leaf area, leaf nitrogen concentration, plant height and wood density with an ensemble modelling approach based on georeferenced, locally measured trait data representative of the plant community. We assessed the predictive performance of the models, the plausibility of predicted trait combinations, the influence of data quality, and the uncertainty across geographical space attributed to spatial extrapolation and diverging model predictions. RESULTS: Ensemble predictions of community mean plant height, specific leaf area and wood density resulted in ecologically plausible trait-environment relationships and trait-trait combinations. Leaf nitrogen concentration, however, could not be predicted reliably. The ensemble approach was better at predicting community trait means than any of the individual modelling techniques, which varied greatly in predictive performance and led to divergent predictions, mostly in African deserts and the Arctic, where predictions were also extrapolated. High data quality (i.e., including intraspecific variability and a representative species sample) increased model performance by 28%. MAIN CONCLUSIONS: Plant community traits can be predicted reliably at the global scale when using an ensemble approach and high-quality data for traits that mostly respond to large-scale environmental factors. We recommend applying ensemble forecasting to account for model uncertainty, using representative trait data, and more routinely assessing the reliability of trait predictions.

2.
Mycorrhiza ; 30(6): 697-704, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32803447

RESUMO

Numerous studies of terrestrial orchids have demonstrated widespread partial mycoheterotrophy, particularly the possibility of obtaining organic matter from surrounding trees through a common fungal network. Fungi are also widespread in epiphytic orchid roots, but there have been no attempts to determine if epiphytes accept organic matter from the living stems of their phorophytes. We hypothesise that such transfer does not exist because epiphytes and phorophytes harbour different fungal communities. To test this hypothesis, we tagged three short Randia sp. trees with 13C-enriched CO2 and examined 13C transfer from the phorophyte into the epiphytic orchids Grosourdya appendiculata, Dendrobium oligophyllum and Gastrochilus sp. in Cat Tien National Park, (South Vietnam, Cat Tien National Park, plot size approx. 1 ha). The coincidence of fungal sequences in the orchid roots and in the branches on which they grew was also examined. We did not detect 13C label moving from phorophytes to epiphytes. Using Illumina sequencing, 162 fungal operational taxonomic units (OTUs) were detected. The fungal communities were significantly different between the roots of epiphytes and branches of phorophytes, although no strict fungal specificity at the species level was found in either epiphytes or phorophytes.


Assuntos
Micorrizas , Orchidaceae , Fungos , Filogenia , Raízes de Plantas , Simbiose , Árvores
3.
Proc Natl Acad Sci U S A ; 110(45): 18180-4, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24145400

RESUMO

Predicting climate change impact on ecosystem structure and services is one of the most important challenges in ecology. Until now, plant species response to climate change has been described at the level of fixed plant functional types, an approach limited by its inflexibility as there is much interspecific functional variation within plant functional types. Considering a plant species as a set of functional traits greatly increases our possibilities for analysis of ecosystem functioning and carbon and nutrient fluxes associated therewith. Moreover, recently assembled large-scale databases hold comprehensive per-species data on plant functional traits, allowing a detailed functional description of many plant communities on Earth. Here, we show that plant functional traits can be used as predictors of vegetation response to climate warming, accounting in our test ecosystem (the species-rich alpine belt of Caucasus mountains, Russia) for 59% of variability in the per-species abundance relation to temperature. In this mountain belt, traits that promote conservative leaf water economy (higher leaf mass per area, thicker leaves) and large investments in belowground reserves to support next year's shoot buds (root carbon content) were the best predictors of the species increase in abundance along with temperature increase. This finding demonstrates that plant functional traits constitute a highly useful concept for forecasting changes in plant communities, and their associated ecosystem services, in response to climate change.


Assuntos
Adaptação Biológica/fisiologia , Mudança Climática , Ecossistema , Fenômenos Fisiológicos Vegetais/fisiologia , Carbono/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/metabolismo , Transpiração Vegetal/fisiologia , Dinâmica Populacional , Federação Russa , Especificidade da Espécie
4.
New Phytol ; 208(1): 280-93, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26011828

RESUMO

A significant fraction of carbon stored in the Earth's soil moves through arbuscular mycorrhiza (AM) and ectomycorrhiza (EM). The impacts of AM and EM on the soil carbon budget are poorly understood. We propose a method to quantify the mycorrhizal contribution to carbon cycling, explicitly accounting for the abundance of plant-associated and extraradical mycorrhizal mycelium. We discuss the need to acquire additional data to use our method, and present our new global database holding information on plant species-by-site intensity of root colonization by mycorrhizas. We demonstrate that the degree of mycorrhizal fungal colonization has globally consistent patterns across plant species. This suggests that the level of plant species-specific root colonization can be used as a plant trait. To exemplify our method, we assessed the differential impacts of AM : EM ratio and EM shrub encroachment on carbon stocks in sub-arctic tundra. AM and EM affect tundra carbon stocks at different magnitudes, and via partly distinct dominant pathways: via extraradical mycelium (both EM and AM) and via mycorrhizal impacts on above- and belowground biomass carbon (mostly AM). Our method provides a powerful tool for the quantitative assessment of mycorrhizal impact on local and global carbon cycling processes, paving the way towards an improved understanding of the role of mycorrhizas in the Earth's carbon cycle.


Assuntos
Ciclo do Carbono , Carbono/metabolismo , Micorrizas/metabolismo , Raízes de Plantas , Plantas , Microbiologia do Solo , Solo/química , Biomassa , Micélio , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Plantas/metabolismo , Plantas/microbiologia , Simbiose
5.
Ecology ; : e4438, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39355992

RESUMO

A soil seed bank is the collective name for viable seeds that are stored naturally in the soil. At the species or population level, the ability to form a seed bank represents a strategy for (re)colonization following a disturbance or other change in the local environmental conditions. At the community level, seed banks are thought to buffer local diversity during periods of environmental change and are often studied in relation to the potential for passive habitat restoration. The role that seed banks play in plant population and community dynamics, as well as their importance in the agricultural sector, means that they have been widely studied in ecological research. This database is the result of a comprehensive literature search, including all seed bank studies from the Web of Science from which data could be extracted, as well as an additional search of the Russian language literature. The database contains information on the species richness, seed density, and/or seed abundance in 3096 records from at least 1929 locations across the world's seven continents, extracted from 1442 studies published between 1940 and 2020. Records are grouped into five broad habitat categories (aquatic, arable, forest, grassland-including shrubland-and wetland), including information relating to habitat degradation from, or restoration to other habitats (total 14 combinations). Sampling protocols were also extracted for each record, and the database was extensively checked for errors. The location of each record was then used to extract summary climate data and biome classification from external published databases. The database has several potential uses. The large geographical spread relative to many other global biodiversity datasets is relevant for investigating patterns of diversity in biogeographical or macroecological contexts. Habitat type and status (intact, degraded, and restored) can be used to provide insights for biodiversity conservation, while the potential effects of sampling method and effort can be used to inform optimized data collection for future seed bank studies. This database is released under the CC-BY license.

6.
Ecology ; 103(6): e3626, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34967948

RESUMO

Plants are subject to trade-offs among growth strategies such that adaptations for optimal growth in one condition can preclude optimal growth in another. Thus, we predicted that a plant species that responds positively to one global change treatment would be less likely than average to respond positively to another treatment, particularly for pairs of treatments that favor distinct traits. We examined plant species' abundances in 39 global change experiments manipulating two or more of the following: CO2 , nitrogen, phosphorus, water, temperature, or disturbance. Overall, the directional response of a species to one treatment was 13% more likely than expected to oppose its response to a another single-factor treatment. This tendency was detectable across the global data set, but held little predictive power for individual treatment combinations or within individual experiments. Although trade-offs in the ability to respond to different global change treatments exert discernible global effects, other forces obscure their influence in local communities.


Assuntos
Nitrogênio , Plantas , Aclimatação , Temperatura , Água
7.
Microorganisms ; 9(2)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499315

RESUMO

Deserts cover a significant proportion of the Earth's surface and continue to expand as a consequence of climate change. Mutualistic arbuscular mycorrhizal (AM) fungi are functionally important plant root symbionts, and may be particularly important in drought stressed systems such as deserts. Here we provide a first molecular characterization of the AM fungi occurring in several desert ecosystems worldwide. We sequenced AM fungal DNA from soil samples collected from deserts in six different regions of the globe using the primer pair WANDA-AML2 with Illumina MiSeq. We recorded altogether 50 AM fungal phylotypes. Glomeraceae was the most common family, while Claroideoglomeraceae, Diversisporaceae and Acaulosporaceae were represented with lower frequency and abundance. The most diverse site, with 35 virtual taxa (VT), was in the Israeli Negev desert. Sites representing harsh conditions yielded relatively few reads and low richness estimates, for example, a Saudi Arabian desert site where only three Diversispora VT were recorded. The AM fungal taxa recorded in the desert soils are mostly geographically and ecologically widespread. However, in four sites out of six, communities comprised more desert-affiliated taxa (according to the MaarjAM database) than expected at random. AM fungal VT present in samples were phylogenetically clustered compared with the global taxon pool, suggesting that nonrandom assembly processes, notably habitat filtering, may have shaped desert fungal assemblages.

8.
Ecol Lett ; 12(8): 758-64, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19500130

RESUMO

The evolution of plants has yielded a wealth of adaptations for the acquisition of key mineral nutrients. These include the structure, physiology and positioning of root systems. We report the discovery of specialized snow roots as a plant strategy to cope with the very short season for nutrient uptake and growth in alpine snow-beds, i.e. patches in the landscape that remain snow-covered well into the summer. We provide anatomical, chemical and experimental (15)N isotope tracking evidence that the Caucasian snow-bed plant Corydalis conorhiza forms extensive networks of specialized above-ground roots, which grow against gravity to acquire nitrogen directly from within snow packs. Snow roots capture nitrogen that would otherwise partly run off down-slope over a frozen surface, thereby helping to nourish these alpine ecosystems. Climate warming is changing and will change mountain snow regimes, while large-scale anthropogenic N deposition has increased snow N contents. These global changes are likely to impact on the distribution, abundance and functional significance of snow roots.


Assuntos
Adaptação Fisiológica/fisiologia , Corydalis/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Neve , Marcação por Isótopo , Isótopos de Nitrogênio/metabolismo , Raízes de Plantas/anatomia & histologia , Federação Russa
9.
Ecol Lett ; 10(7): 619-27, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17542940

RESUMO

Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide. Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.


Assuntos
Clima Frio , Ecossistema , Efeito Estufa , Modelos Biológicos , Desenvolvimento Vegetal , Folhas de Planta/metabolismo , Análise de Variância , Carbono/química , Plantas/metabolismo , Especificidade da Espécie , Suécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA