Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Vaccine ; 33(7): 879-84, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25545595

RESUMO

A critical step in producing the annual inactivated influenza vaccine is the development of high yield (hy) seed viruses by reassortment for improved growth in ovo. Although hy reassortants for type A influenza viruses have been developed for many years, hy B influenza reassortant virus development for vaccine production has proven difficult. In this study, we have developed fourteen hy influenza type B reassortants as vaccine candidate strains with B/Lee/40 as the donor virus. Upon characterization by the Influenza Division at the Centers for Disease Control and Prevention (CDC) and the verification of HA by sequencing, all B reassortants were found to be antigenically indistinguishable from the wild type (wt) parents and suitable for vaccine production. However, only one hy reassortant seed virus from this group was used by a manufacturer for vaccine production. In general, hy reassortants showed an increase in hemagglutination (HA) titers over their wt parents by approximately 8 fold (range 1-32 fold). Gene compositions of the hy B reassortants were analyzed by restriction fragment length polymorphism (RFLP) and the wt origin of the HA and neuraminidase (NA) were confirmed. However, in contrast to hy A reassortants which require the M gene (hy donor A/PR/8/34) for high yield, all fourteen hy B reassortants obtained the NP gene from the hy donor strain (B/Lee/40). The parental source for the remaining genes varied among the hy B reassortants. The results indicate that the B/Lee/40 NP and PB1 gene segments are important contributors to high yield growth in influenza B reassortant viruses for both Yamagata and Victoria lineages. The B/Lee/40 PB2 gene along with wt NS gene also contributed to the improved growth for hy reassortants of Yamagata lineage.


Assuntos
Vírus da Influenza B/genética , Vírus da Influenza B/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Vírus Reordenados/genética , Vírus Reordenados/imunologia , Humanos , Proteínas Virais/imunologia
2.
PLoS One ; 8(6): e65955, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23776579

RESUMO

BACKGROUND: Human influenza virus isolates generally grow poorly in embryonated chicken eggs. Hence, gene reassortment of influenza A wild type (wt) viruses is performed with a highly egg adapted donor virus, A/Puerto Rico/8/1934 (PR8), to provide the high yield reassortant (HYR) viral 'seeds' for vaccine production. HYR must contain the hemagglutinin (HA) and neuraminidase (NA) genes of wt virus and one to six 'internal' genes from PR8. Most studies of influenza wt and HYRs have focused on the HA gene. The main objective of this study is the identification of the molecular signature in all eight gene segments of influenza A HYR candidate vaccine seeds associated with high growth in ovo. METHODOLOGY: The genomes of 14 wt parental viruses, 23 HYRs (5 H1N1; 2, 1976 H1N1-SOIV; 2, 2009 H1N1pdm; 2 H2N2 and 12 H3N2) and PR8 were sequenced using the high-throughput sequencing pipeline with big dye terminator chemistry. RESULTS: Silent and coding mutations were found in all internal genes derived from PR8 with the exception of the M gene. The M gene derived from PR8 was invariant in all 23 HYRs underlining the critical role of PR8 M in high yield phenotype. None of the wt virus derived internal genes had any silent change(s) except the PB1 gene in X-157. The highest number of recurrent silent and coding mutations was found in NS. With respect to the surface antigens, the majority of HYRs had coding mutations in HA; only 2 HYRs had coding mutations in NA. SIGNIFICANCE: In the era of application of reverse genetics to alter influenza A virus genomes, the mutations identified in the HYR gene segments associated with high growth in ovo may be of great practical benefit to modify PR8 and/or wt virus gene sequences for improved growth of vaccine 'seed' viruses.


Assuntos
Genoma Viral/genética , Vírus da Influenza A/genética , Hemaglutininas/genética , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Mutação , Neuraminidase/genética
3.
Virology ; 308(2): 354-61, 2003 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-12706084

RESUMO

The inner core of bacteriophage phi8 is capable of packaging and replicating the plus strands of the RNA genomic segments of the virus in vitro. The particles composed of proteins P1, P2, P4, and P7 can be assembled in cells of E. coli that carry plasmids with cDNA copies of genomic segment L. The gene arrangement on segment L was found to differ from that of other cystoviruses in that the gene for the ortholog of protein P7 is located at the 3' end of the plus strand rather than near the 5' end. In place of the normal location of gene 7 is gene H, whose product is necessary for normal phage development, but not necessary for in vitro genomic packaging and replication. Genomic packaging is dependent upon the activity of an NTPase motor protein, P4. P4 was purified from cell extracts and was found to form hexamers with little NTPase activity until associated with inner core particles. Labeling studies of in vitro packaging of phi8 RNA do not show serial dependence; however, studies involving in vitro packaging for the formation of live virus indicate that packaging is stringent. Studies with the acquisition of chimeric segments in live virus indicate that phi8 does package RNA in the order s/m/l. The inner core of bacteriophage phi8 differs from that of its relatives in the Cystoviridae in that the major structural protein P1 is able to interact with the host cell membrane to effect penetration of the inner core into the cell.


Assuntos
Cystoviridae/genética , RNA de Cadeia Dupla/química , Montagem de Vírus , Adenosina Trifosfatases/metabolismo , Capsídeo/fisiologia , Cystoviridae/fisiologia , Genoma Viral , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA