Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Crit Care Med ; 44(7): e553-62, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26963321

RESUMO

OBJECTIVES: The biologic effects of variable ventilation may depend on the etiology of acute respiratory distress syndrome. We compared variable and conventional ventilation in experimental pulmonary and extrapulmonary acute respiratory distress syndrome. DESIGN: Prospective, randomized, controlled experimental study. SETTINGS: University research laboratory. SUBJECTS: Twenty-four Wistar rats. INTERVENTIONS: Acute respiratory distress syndrome was induced by Escherichia coli lipopolysaccharide administered intratracheally (pulmonary acute respiratory distress syndrome, n = 12) or intraperitoneally (extrapulmonary acute respiratory distress syndrome, n = 12). After 24 hours, animals were randomly assigned to receive conventional (volume-controlled ventilation, n = 6) or variable ventilation (n = 6). Nonventilated animals (n = 4 per etiology) were used for comparison of diffuse alveolar damage, E-cadherin, and molecular biology variables. Variable ventilation was applied on a breath-to-breath basis as a sequence of randomly generated tidal volume values (n = 600; mean tidal volume = 6 mL/kg), with a 30% coefficient of variation (normal distribution). After randomization, animals were ventilated for 1 hour and lungs were removed for histology and molecular biology analysis. MEASUREMENTS AND MAIN RESULTS: Variable ventilation improved oxygenation and reduced lung elastance compared with volume-controlled ventilation in both acute respiratory distress syndrome etiologies. In pulmonary acute respiratory distress syndrome, but not in extrapulmonary acute respiratory distress syndrome, variable ventilation 1) decreased total diffuse alveolar damage (median [interquartile range]: volume-controlled ventilation, 12 [11-17] vs variable ventilation, 9 [8-10]; p < 0.01), interleukin-6 expression (volume-controlled ventilation, 21.5 [18.3-23.3] vs variable ventilation, 5.6 [4.6-12.1]; p < 0.001), and angiopoietin-2/angiopoietin-1 ratio (volume-controlled ventilation, 2.0 [1.3-2.1] vs variable ventilation, 0.7 [0.6-1.4]; p < 0.05) and increased relative angiopoietin-1 expression (volume-controlled ventilation, 0.3 [0.2-0.5] vs variable ventilation, 0.8 [0.5-1.3]; p < 0.01). In extrapulmonary acute respiratory distress syndrome, only volume-controlled ventilation increased vascular cell adhesion molecule-1 messenger RNA expression (volume-controlled ventilation, 7.7 [5.7-18.6] vs nonventilated, 0.9 [0.7-1.3]; p < 0.05). E-cadherin expression in lung tissue was reduced in volume-controlled ventilation compared with nonventilated regardless of acute respiratory distress syndrome etiology. In pulmonary acute respiratory distress syndrome, E-cadherin expression was similar in volume-controlled ventilation and variable ventilation; in extrapulmonary acute respiratory distress syndrome, however, it was higher in variable ventilation than in volume-controlled ventilation. CONCLUSIONS: Variable ventilation improved lung function in both pulmonary acute respiratory distress syndrome and extrapulmonary acute respiratory distress syndrome. Variable ventilation led to more pronounced beneficial effects in biologic marker expressions in pulmonary acute respiratory distress syndrome compared with extrapulmonary acute respiratory distress syndrome but preserved E-cadherin in lung tissue only in extrapulmonary acute respiratory distress syndrome, thus suggesting lower damage to epithelial cells.


Assuntos
Pulmão/fisiopatologia , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/terapia , Mecânica Respiratória , Animais , Lipopolissacarídeos , Pulmão/patologia , Distribuição Aleatória , Ratos , Ratos Wistar , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/fisiopatologia , Volume de Ventilação Pulmonar
2.
Anesthesiology ; 122(1): 106-16, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25141026

RESUMO

BACKGROUND: Mechanical ventilation can lead to lung biotrauma when mechanical stress exceeds safety thresholds. The authors investigated whether the duration of mechanical stress, that is, the impact of a stress versus time product (STP), influences biotrauma. The authors hypothesized that higher STP levels are associated with increased inflammation and with alveolar epithelial and endothelial cell injury. METHODS: In 46 rats, Escherichia coli lipopolysaccharide (acute lung inflammation) or saline (control) was administered intratracheally. Both groups were protectively ventilated with inspiratory-to-expiratory ratios 1:2, 1:1, or 2:1 (n = 12 each), corresponding to low, middle, and high STP levels (STPlow, STPmid, and STPhigh, respectively). The remaining 10 animals were not mechanically ventilated. RESULTS: In animals with mild acute lung inflammation, but not in controls: (1) messenger RNA expression of interleukin-6 was higher in STPhigh (28.1 ± 13.6; mean ± SD) and STPlow (28.9 ± 16.0) versus STPmid (7.4 ± 7.5) (P < 0.05); (2) expression of the receptor for advanced glycation end-products was increased in STPhigh (3.6 ± 1.6) versus STPlow (2.3 ± 1.1) (P < 0.05); (3) alveolar edema was decreased in STPmid (0 [0 to 0]; median, Q1 to Q3) compared with STPhigh (0.8 [0.6 to 1]) (P < 0.05); and (4) expressions of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 were higher in STPlow (3.0 ± 1.8) versus STPhigh (1.2 ± 0.5) and STPmid (1.4 ± 0.7) (P < 0.05), respectively. CONCLUSIONS: In the mild acute lung inflammation model used herein, mechanical ventilation with inspiratory-to-expiratory of 1:1 (STPmid) minimized lung damage, whereas STPhigh increased the gene expression of biological markers associated with inflammation and alveolar epithelial cell injury and STPlow increased markers of endothelial cell damage.


Assuntos
Endotélio/fisiopatologia , Inflamação/sangue , Alvéolos Pulmonares/fisiopatologia , Respiração Artificial/efeitos adversos , Mucosa Respiratória/fisiopatologia , Estresse Fisiológico/fisiologia , Animais , Biomarcadores/sangue , Modelos Animais de Doenças , Endotélio/metabolismo , Inflamação/etiologia , Molécula 1 de Adesão Intercelular/sangue , Interleucina-6/sangue , Masculino , Alvéolos Pulmonares/metabolismo , Ratos , Ratos Wistar , Respiração Artificial/métodos , Mucosa Respiratória/metabolismo , Fatores de Tempo , Molécula 1 de Adesão de Célula Vascular/sangue
3.
Respir Physiol Neurobiol ; 309: 103999, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36460253

RESUMO

BACKGROUND: In experimental sepsis, functional and morphological effects of bone marrow-derived mononuclear cell (BMDMC) administration in lung tissue have been evaluated 1 and 7 days after therapy. However, to date no study has evaluated the early effects of BMDMCs in both lung and kidney in experimental polymicrobial sepsis. MATERIAL AND METHODS: Twenty-five female C57BL/6 mice were randomly divided into the following groups: 1) cecal ligation and puncture (CLP)-induced sepsis; and 2) Sham (surgical procedure without CLP). After 1 h, CLP animals received saline (NaCl 0.9%) (CLP-Saline) or 106 BMDMCs (CLP-Cell) via the jugular vein. At 6, 12, and 24 h after saline or BMDMC administration, lungs and kidneys were removed for histology and molecular biology analysis. RESULTS: In lungs, CLP-Saline, compared to Sham, was associated with increased lung injury score (LIS) and keratinocyte chemoattractant (KC) mRNA expression at 6, 12, and 24 h. BMDMCs were associated with reduced LIS and KC mRNA expression regardless of the time point of analysis. Interleukin (IL)- 10 mRNA content was higher in CLP-Cell than CLP-Saline at 6 and 24 h. In kidney tissue, CLP-Saline, compared to Sham, was associated with tubular cell injury and increased neutrophil gelatinase-associated lipocalin (NGAL) levels, which were reduced after BMDMC therapy at all time points. Surface high-mobility-group-box (HMGB)- 1 levels were higher in CLP-Saline than Sham at 6, 12, and 24 h, whereas nuclear HMGB-1 levels were increased only at 24 h. BMDMCs were associated with decreased surface HMGB-1 and increased nuclear HMGB-1 levels. Kidney injury molecule (KIM)- 1 and IL-18 gene expressions were reduced in CLP-Cell compared to CLP-Saline at 12 and 24 h. CONCLUSION: In the present experimental polymicrobial sepsis, early intravenous therapy with BMDMCs was able to reduce lung and kidney damage in a time-dependent manner. BMDMCs thus represent a potential therapy in well-known scenarios of sepsis induction. PURPOSE: To evaluate early bone marrow-derived mononuclear cell (BMDMC) therapy on lung and kidney in experimental polymicrobial sepsis. METHODS: Twenty-five female C57BL/6 mice were randomly divided into the following groups: cecal ligation and puncture (CLP)-induced sepsis; and sham (surgical procedure without CLP). After 1 h, CLP animals received saline (CLP-saline) or 106 BMDMCs (CLP-cell) via the jugular vein. Lungs and kidneys were evaluated for histology and molecular biology after 6, 12, and 24 h. RESULTS: In lungs, BMDMCs reduced the lung injury score and keratinocyte chemoattractant mRNA expression regardless of the time point of analysis; interleukin-10 mRNA content was higher in CLP-cell than CLP-saline at 6 and 24 h. In kidneys, BMDMCs reduced neutrophil gelatinase-associated lipocalin levels at all time points. BMDMCs decreased surface high mobility group box (HMGB)- 1 but increased nuclear HMGB-1 levels. CONCLUSION: Early BMDMC therapy reduced lung and kidney damage in a time-dependent manner.


Assuntos
Lesão Pulmonar , Sepse , Camundongos , Animais , Feminino , Lipocalina-2/metabolismo , Lesão Pulmonar/complicações , Medula Óssea/metabolismo , Medula Óssea/patologia , Camundongos Endogâmicos C57BL , Rim/metabolismo , Pulmão/metabolismo , Sepse/complicações , Fatores Quimiotáticos/metabolismo , RNA Mensageiro/metabolismo , Proteínas HMGB/metabolismo
4.
Crit Care Med ; 39(5): 1074-81, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21263326

RESUMO

OBJECTIVE: To investigate the effects of the rate of airway pressure increase and duration of recruitment maneuvers on lung function and activation of inflammation, fibrogenesis, and apoptosis in experimental acute lung injury. DESIGN: Prospective, randomized, controlled experimental study. SETTING: University research laboratory. SUBJECTS: Thirty-five Wistar rats submitted to acute lung injury induced by cecal ligation and puncture. INTERVENTIONS: After 48 hrs, animals were randomly distributed into five groups (seven animals each): 1) nonrecruited (NR); 2) recruitment maneuvers (RMs) with continuous positive airway pressure (CPAP) for 15 secs (CPAP15); 3) RMs with CPAP for 30 secs (CPAP30); 4) RMs with stepwise increase in airway pressure (STEP) to targeted maximum within 15 secs (STEP15); and 5) RMs with STEP within 30 secs (STEP30). To perform STEP RMs, the ventilator was switched to a CPAP mode and positive end-expiratory pressure level was increased stepwise. At each step, airway pressure was held constant. RMs were targeted to 30 cm H2O. Animals were then ventilated for 1 hr with tidal volume of 6 mL/kg and positive end-expiratory pressure of 5 cm H2O. MEASUREMENTS AND MAIN RESULTS: Blood gases, lung mechanics, histology (light and electronic microscopy), interleukin-6, caspase 3, and type 3 procollagen mRNA expressions in lung tissue. All RMs improved oxygenation and lung static elastance and reduced alveolar collapse compared to NR. STEP30 resulted in optimal performance, with: 1) improved lung static elastance vs. NR, CPAP15, and STEP15; 2) reduced alveolar-capillary membrane detachment and type 2 epithelial and endothelial cell injury scores vs. CPAP15 (p < .05); and 3) reduced gene expression of interleukin-6, type 3 procollagen, and caspase 3 in lung tissue vs. other RMs. CONCLUSIONS: Longer-duration RMs with slower airway pressure increase efficiently improved lung function, while minimizing the biological impact on lungs.


Assuntos
Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/terapia , Pressão Positiva Contínua nas Vias Aéreas/métodos , Pulmão/metabolismo , Lesão Pulmonar Aguda/complicações , Lesão Pulmonar Aguda/mortalidade , Animais , Caspase 3/análise , Caspase 3/metabolismo , Modelos Animais de Doenças , Interleucina-6/análise , Interleucina-6/metabolismo , Pulmão/fisiopatologia , Masculino , Microscopia Eletrônica de Transmissão , Pró-Colágeno , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Distribuição Aleatória , Ratos , Ratos Wistar , Mecânica Respiratória , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade , Sepse/complicações , Taxa de Sobrevida , Fatores de Tempo
5.
Crit Care Med ; 38(11): 2207-14, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20818231

RESUMO

OBJECTIVE: In acute lung injury, recruitment maneuvers have been used to open collapsed lungs and set positive end-expiratory pressure, but their effectiveness may depend on the degree of lung injury. This study uses a single experimental model with different degrees of lung injury and tests the hypothesis that recruitment maneuvers may have beneficial or deleterious effects depending on the severity of acute lung injury. We speculated that recruitment maneuvers may worsen lung mechanical stress in the presence of alveolar edema. DESIGN: Prospective, randomized, controlled experimental study. SETTING: University research laboratory. SUBJECTS: Thirty-six Wistar rats randomly divided into three groups (n = 12 per group). INTERVENTIONS: In the control group, saline was intraperitoneally injected, whereas moderate and severe acute lung injury animals received paraquat intraperitoneally (20 mg/kg [moderate acute lung injury] and 25 mg/kg [severe acute lung injury]). After 24 hrs, animals were further randomized into subgroups (n = 6/each) to be recruited (recruitment maneuvers: 40 cm H2O continuous positive airway pressure for 40 secs) or not, followed by 1 hr of protective mechanical ventilation (tidal volume, 6 mL/kg; positive end-expiratory pressure, 5 cm H2O). MEASUREMENTS AND MAIN RESULTS: Only severe acute lung injury caused alveolar edema. The amounts of alveolar collapse were similar in the acute lung injury groups. Static lung elastance, viscoelastic pressure, hyperinflation, lung, liver, and kidney cell apoptosis, and type 3 procollagen and interleukin-6 mRNA expressions in lung tissue were more elevated in severe acute lung injury than in moderate acute lung injury. After recruitment maneuvers, static lung elastance, viscoelastic pressure, and alveolar collapse were lower in moderate acute lung injury than in severe acute lung injury. Recruitment maneuvers reduced interleukin-6 expression with a minor detachment of the alveolar capillary membrane in moderate acute lung injury. In severe acute lung injury, recruitment maneuvers were associated with hyperinflation, increased apoptosis of lung and kidney, expression of type 3 procollagen, and worsened alveolar capillary injury. CONCLUSIONS: In the presence of alveolar edema, regional mechanical heterogeneities, and hyperinflation, recruitment maneuvers promoted a modest but consistent increase in inflammatory and fibrogenic response, which may have worsened lung function and potentiated alveolar and renal epithelial injury.


Assuntos
Lesão Pulmonar Aguda/terapia , Pressão Positiva Contínua nas Vias Aéreas , Atelectasia Pulmonar/etiologia , Edema Pulmonar/etiologia , Lesão Pulmonar Aguda/complicações , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/fisiopatologia , Animais , Colágeno Tipo III/biossíntese , Interleucina-6/biossíntese , Rim/patologia , Fígado/patologia , Pulmão/patologia , Microscopia Eletrônica de Transmissão , Alvéolos Pulmonares/lesões , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/fisiopatologia , Atelectasia Pulmonar/terapia , Edema Pulmonar/terapia , Ratos , Ratos Wistar , Respiração Artificial , Mecânica Respiratória/fisiologia
6.
Crit Care ; 14(3): R114, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20546573

RESUMO

INTRODUCTION: Recruitment maneuvers (RMs) seem to be more effective in extrapulmonary acute lung injury (ALI), caused mainly by sepsis, than in pulmonary ALI. Nevertheless, the maintenance of adequate volemic status is particularly challenging in sepsis. Since the interaction between volemic status and RMs is not well established, we investigated the effects of RMs on lung and distal organs in the presence of hypovolemia, normovolemia, and hypervolemia in a model of extrapulmonary lung injury induced by sepsis. METHODS: ALI was induced by cecal ligation and puncture surgery in 66 Wistar rats. After 48 h, animals were anesthetized, mechanically ventilated and randomly assigned to 3 volemic status (n = 22/group): 1) hypovolemia induced by blood drainage at mean arterial pressure (MAP) approximately 70 mmHg; 2) normovolemia (MAP approximately 100 mmHg), and 3) hypervolemia with colloid administration to achieve a MAP approximately 130 mmHg. In each group, animals were further randomized to be recruited (CPAP = 40 cm H2O for 40 s) or not (NR) (n = 11/group), followed by 1 h of protective mechanical ventilation. Echocardiography, arterial blood gases, static lung elastance (Est,L), histology (light and electron microscopy), lung wet-to-dry (W/D) ratio, interleukin (IL)-6, IL-1beta, caspase-3, type III procollagen (PCIII), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) mRNA expressions in lung tissue, as well as lung and distal organ epithelial cell apoptosis were analyzed. RESULTS: We observed that: 1) hypervolemia increased lung W/D ratio with impairment of oxygenation and Est,L, and was associated with alveolar and endothelial cell damage and increased IL-6, VCAM-1, and ICAM-1 mRNA expressions; and 2) RM reduced alveolar collapse independent of volemic status. In hypervolemic animals, RM improved oxygenation above the levels observed with the use of positive-end expiratory pressure (PEEP), but increased lung injury and led to higher inflammatory and fibrogenetic responses. CONCLUSIONS: Volemic status should be taken into account during RMs, since in this sepsis-induced ALI model hypervolemia promoted and potentiated lung injury compared to hypo- and normovolemia.


Assuntos
Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/terapia , Volume Sanguíneo , Sepse/complicações , Lesão Pulmonar Aguda/fisiopatologia , Animais , Apoptose/fisiologia , Brasil , Microscopia Eletrônica , Modelos Animais , Respiração com Pressão Positiva , Alvéolos Pulmonares/fisiopatologia , Distribuição Aleatória , Ratos , Ratos Wistar , Respiração Artificial , Sepse/fisiopatologia , Resultado do Tratamento
7.
Cell Physiol Biochem ; 24(5-6): 585-94, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19910699

RESUMO

The growing number of patients suffering from chronic renal disease is a challenge for the development of innovative therapies. Benefits of cell therapy in acute renal diseases in animal models have been reported but seldom for chronic lesions. We present evidence for the improvement of renal morphology in a model of tubulointerstitial fibrosis. Wistar rats were submitted to unilateral ureteral obstruction (UUO), treated with bone-marrow mononuclear cells (UUO+BMMC) infused via the cava vein, and killed on day 14. Labeled BMMC were seen in renal tissue after 7 days in the group UUO+BMMC. UUO+BMMC also showed a reduction in ED1(+) cells and tubular apoptotic cells together with enhanced tubular proliferation. Myofibroblasts were also reduced after BMMC which is consistent with a decrease in collagen deposition (picro Sirius staining) and RT-PCR data showing lower levels of procollagen-I mRNA. Simultaneously, nestin+ cells increased in the interstitium and decreased in the tubules. Double stained nestin(+)/alpha-SMA(+) cells were present only in the interstitium, and their levels did not change after BMMC infusion. These data indicate a renoprotective effect of BMMC through increased tubular cell regeneration, inhibition of tubular cell apoptosis and partially blocking of the inflammatory and fibrotic events that occur after unilateral ureteral obstruction.


Assuntos
Transplante de Medula Óssea , Túbulos Renais/patologia , Obstrução Ureteral/terapia , Animais , Modelos Animais de Doenças , Células Epiteliais/patologia , Fibrose , Proteínas de Filamentos Intermediários/metabolismo , Rim/patologia , Masculino , Proteínas do Tecido Nervoso/metabolismo , Nestina , Pró-Colágeno/genética , Pró-Colágeno/metabolismo , Ratos , Ratos Wistar , Obstrução Ureteral/patologia
8.
Crit Care Med ; 36(9): 2621-8, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18728474

RESUMO

OBJECTIVE: Corticosteroids have been proposed to be effective in modulating the inflammatory response and pulmonary tissue remodeling in acute lung injury (ALI). We hypothesized that steroid treatment might act differently in models of pulmonary (p) or extrapulmonary (exp) ALI with similar mechanical compromise. DESIGN: Prospective, randomized, controlled experimental study. SETTING: University research laboratory. SUBJECTS: One hundred twenty-eight BALB/c mice (20-25 g). INTERVENTIONS: Mice were divided into six groups. In control animals sterile saline solution was intratracheally (0.05 mL, Cp) or intraperitoneally (0.5 mL, Cexp) injected, whereas ALI animals received Escherichia coli lipopolysaccharide intratracheally (10 microg, ALIp) or intraperitoneally (125 microg, ALIexp). Six hours after lipopolysaccharide administration, ALIp and ALIexp animals were further randomized into subgroups receiving saline (0.1 mL intravenously) or methylprednisolone (2 mg/kg intravenously, Mp and Mexp, respectively). MEASUREMENTS AND MAIN RESULTS: At 24 hrs, lung static elastance, resistive and viscoelastic pressures, lung morphometry, and collagen fiber content were similar in both ALI groups. KC, interleukin-6, and transforming growth factor (TGF)-beta levels in bronchoalveolar lavage fluid, as well as tumor necrosis factor (TNF)-alpha, migration inhibitory factor (MIF), interferon (IFN)-gamma, TGF-beta1 and TGF-beta2 messenger RNA expression in lung tissue were higher in ALIp than in ALIexp animals. Methylprednisolone attenuated mechanical and morphometric changes, cytokine levels, and TNF-alpha, MIF, IFNgamma, and TGF-beta2 messenger RNA expression only in ALIp animals, but prevented any changes in collagen fiber content in both ALI groups. CONCLUSIONS: Methylprednisolone is effective to inhibit fibrogenesis independent of the etiology of ALI, but its ability to attenuate inflammatory responses and lung mechanical changes varies according to the cause of ALI.


Assuntos
Anti-Inflamatórios/uso terapêutico , Metilprednisolona/uso terapêutico , Síndrome do Desconforto Respiratório/tratamento farmacológico , Mecânica Respiratória/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Colágenos Fibrilares/metabolismo , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Pulmão/fisiopatologia , Metilprednisolona/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Atelectasia Pulmonar/patologia , Distribuição Aleatória , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/fisiopatologia
9.
Respir Physiol Neurobiol ; 195: 27-36, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24548974

RESUMO

We analyzed the effects of pneumothorax duration and early or late drainage on lung histology and biological markers associated with inflammation, alveolar fluid clearance, and pulmonary oedema formation. Pneumothorax was induced by injecting air into the thorax of anaesthetized rats, which were randomized according to duration of pneumothorax [5 (PTX5) or 30 (PTX30)min] and further divided to be drained (D) or not (ND). ND rats were euthanized at 5 and 30min. In D groups, pneumothorax was drained and rats breathed spontaneously for 30min. PTX30-ND, compared to PTX5-ND, showed higher alveolar collapse and oedema, type III procollagen, caspase-3, epithelial sodium channel-α, and aquaporin (AQP)-1 mRNA expression, and epithelial and endothelial damage, with reduced cystic fibrosis transmembrane conductance regulator (CFTR) and AQP-3 expression. PTX5-D, compared to PTX30-D, showed less alveolar hyperinflation, oedema, and alveolar-capillary damage, with reduced interleukin-6, caspase-3, AQP-5, and Na,K-ATPase-α and -ß expression, and increased CFTR expression. In conclusion, longer duration pneumothorax exacerbated lung damage, oedema, and inflammation.


Assuntos
Drenagem , Pneumotórax/terapia , Edema Pulmonar/etiologia , Animais , Aquaporina 1/metabolismo , Aquaporina 3/metabolismo , Aquaporina 5/metabolismo , Caspase 3/metabolismo , Colágeno Tipo III/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Endotélio/patologia , Interleucina-6/metabolismo , Masculino , Pneumotórax/complicações , Pneumotórax/imunologia , Pneumotórax/patologia , Alvéolos Pulmonares/patologia , Edema Pulmonar/imunologia , Edema Pulmonar/patologia , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar , Mucosa Respiratória/patologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Fatores de Tempo
10.
Respir Physiol Neurobiol ; 187(2): 190-8, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23548824

RESUMO

We compared the effects of bone marrow-derived mononuclear cells (BMMCs) and mesenchymal stromal cells (MSCs) on airway inflammation and remodeling and lung mechanics in experimental allergic asthma. C57BL/6 mice were sensitized and challenged with ovalbumin (OVA group). A control group received saline using the same protocol. Twenty-four hours after the last challenge, groups were further randomized into subgroups to receive saline, BMMCs (2×10(6)) or MSCs (1×10(5)) intratracheally. BMMC and MSC administration decreased cell infiltration, bronchoconstriction index, alveolar collapse, collagen fiber content in the alveolar septa, and interleukin (IL)-4, IL-13, transforming growth factor (TGF)-ß and vascular endothelial growth factor (VEGF) levels compared to OVA-SAL. Lung function, alveolar collapse, collagen fiber deposition in alveolar septa, and levels of TGF-ß and VEGF improved more after BMMC than MSC therapy. In conclusion, intratracheal BMMC and MSC administration effectively modulated inflammation and fibrogenesis in an experimental model of asthma, but BMMCs was associated with greater benefit in terms of reducing levels of fibrogenesis-related growth factors.


Assuntos
Asma/patologia , Células da Medula Óssea/patologia , Leucócitos Mononucleares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Análise de Variância , Animais , Antígenos CD/metabolismo , Asma/induzido quimicamente , Asma/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia
11.
Respir Physiol Neurobiol ; 185(3): 615-24, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23164835

RESUMO

We hypothesized that the route of administration would impact the beneficial effects of bone marrow-derived mononuclear cell (BMDMC) therapy on the remodelling process of asthma. C57BL/6 mice were randomly assigned to two main groups. In the OVA group, mice were sensitized and challenged with ovalbumin, while the control group received saline using the same protocol. Twenty-four hours before the first challenge, control and OVA animals were further randomized into three subgroups to receive saline (SAL), BMDMCs intravenously (2×10(6)), or BMDMCs intratracheally (2×10(6)). The following changes were induced by BMDMC therapy in OVA mice regardless of administration route: reduction in resistive and viscoelastic pressures, static elastance, eosinophil infiltration, collagen fibre content in airways and lung parenchyma; and reduction in the levels of interleukin (IL)-4, IL-13, transforming growth factor-ß and vascular endothelial growth factor. In conclusion, BMDMC modulated inflammatory and remodelling processes regardless of administration route in this experimental model of allergic asthma.


Assuntos
Asma/patologia , Asma/terapia , Transplante de Medula Óssea/métodos , Leucócitos Mononucleares/transplante , Administração Intravenosa , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microscopia Eletrônica de Transmissão
12.
Intensive Care Med ; 38(3): 499-508, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22234736

RESUMO

PURPOSE: We hypothesized that: (1) intraabdominal hypertension increases pulmonary inflammatory and fibrogenic responses in acute lung injury (ALI); (2) in the presence of intraabdominal hypertension, higher tidal volume reduces lung damage in extrapulmonary ALI, but not in pulmonary ALI. METHODS: Wistar rats were randomly allocated to receive Escherichia coli lipopolysaccharide intratracheally (pulmonary ALI) or intraperitoneally (extrapulmonary ALI). After 24 h, animals were randomized into subgroups without or with intraabdominal hypertension (15 mmHg) and ventilated with positive end expiratory pressure = 5 cmH(2)O and tidal volume of 6 or 10 ml/kg during 1 h. Lung and chest wall mechanics, arterial blood gases, lung and distal organ histology, and interleukin (IL)-1ß, IL-6, caspase-3 and type III procollagen (PCIII) mRNA expressions in lung tissue were analyzed. RESULTS: With intraabdominal hypertension, (1) chest-wall static elastance increased, and PCIII, IL-1ß, IL-6, and caspase-3 expressions were more pronounced than in animals with normal intraabdominal pressure in both ALI groups; (2) in extrapulmonary ALI, higher tidal volume was associated with decreased atelectasis, and lower IL-6 and caspase-3 expressions; (3) in pulmonary ALI, higher tidal volume led to higher IL-6 expression; and (4) in pulmonary ALI, liver, kidney, and villi cell apoptosis was increased, but not affected by tidal volume. CONCLUSIONS: Intraabdominal hypertension increased inflammation and fibrogenesis in the lung independent of ALI etiology. In extrapulmonary ALI associated with intraabdominal hypertension, higher tidal volume improved lung morphometry with lower inflammation in lung tissue. Conversely, in pulmonary ALI associated with intraabdominal hypertension, higher tidal volume increased IL-6 expression.


Assuntos
Lesão Pulmonar Aguda/imunologia , Hipertensão Intra-Abdominal/imunologia , Fibrose Pulmonar/etiologia , Volume de Ventilação Pulmonar/fisiologia , Lesão Pulmonar Aguda/patologia , Análise de Variância , Animais , Apoptose/efeitos dos fármacos , Colágeno Tipo III , Citocinas/imunologia , Escherichia coli , Infusões Parenterais , Hipertensão Intra-Abdominal/complicações , Intubação Intratraqueal , Lipopolissacarídeos/administração & dosagem , Respiração com Pressão Positiva/métodos , Distribuição Aleatória , Ratos , Ratos Wistar
13.
Respir Physiol Neurobiol ; 182(1): 26-36, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22266352

RESUMO

We hypothesized that bone marrow-derived mononuclear cell (BMDMC) therapy protects the lung and consequently the heart in experimental elastase-induced emphysema. Twenty-four female C57BL/6 mice were intratracheally instilled with saline (C group) or porcine pancreatic elastase (E group) once a week during 4 weeks. C and E groups were randomized into subgroups receiving saline (SAL) or male BMDMCs (2 × 10(6), CELL) intravenously 3h after the first saline or elastase instillation. Compared to E-SAL group, E-CELL mice showed, at 5 weeks: lower mean linear intercept, neutrophil infiltration, elastolysis, collagen fiber deposition in alveolar septa and pulmonary vessel wall, lung cell apoptosis, right ventricle wall thickness and area, higher endothelial growth factor and insulin-like growth factor mRNA expressions in lung tissue, and reduced platelet-derived growth factor, transforming growth factor-ß, and caspase-3 expressions. In conclusion, BMDMC therapy was effective at modulating the inflammatory and remodeling processes in the present model of elastase-induced emphysema.


Assuntos
Enfisema/terapia , Leucócitos Mononucleares/transplante , Pulmão/patologia , Doença Cardiopulmonar/prevenção & controle , Remodelação das Vias Aéreas , Análise de Variância , Animais , Células da Medula Óssea/citologia , Caspase 3/metabolismo , Ecocardiografia , Enfisema/induzido quimicamente , Enfisema/metabolismo , Enfisema/patologia , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pulmão/metabolismo , Subpopulações de Linfócitos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia , Elastase Pancreática , Distribuição Aleatória
14.
Respir Physiol Neurobiol ; 179(2-3): 129-36, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21801858

RESUMO

We analysed the effects of oleanolic acid (OA) on lung mechanics and histology and its possible mechanisms of action in experimental acute lung injury (ALI). BALB/c mice were randomly divided into Control (saline, ip) and ALI (paraquat, 25 mg/kg, ip) groups. At 1 h, both groups were treated with saline (SAL, 50 µl ip), OA (10 mg/kg ip), or dexamethasone (DEXA, 1 mg/kg ip). At 24 h, lung static elastance, viscoelastic pressure, and alveolar collapse reduced more after OA compared to DEXA administration. Tumour necrosis factor-α, macrophage migration inhibitory factor, interleukin-6, interferon-γ, and transforming growth factor-ß mRNA expressions in lung tissue diminished similarly after OA or DEXA. Conversely, only OA avoided reactive oxygen species generation and yielded a significant decrease in nitrite concentration. OA and DEXA restored the reduced glutathione/oxidized glutathione ratio and catalase activity while increasing glutathione peroxidase induced by paraquat. In conclusion, OA improved lung morphofunction by modulating the release of inflammatory mediators and oxidative stress.


Assuntos
Lesão Pulmonar Aguda/imunologia , Anti-Inflamatórios/farmacologia , Pulmão/efeitos dos fármacos , Ácido Oleanólico/farmacologia , Mecânica Respiratória/efeitos dos fármacos , Lesão Pulmonar Aguda/patologia , Animais , Líquido da Lavagem Broncoalveolar/química , Quimiocinas/análise , Quimiocinas/biossíntese , Modelos Animais de Doenças , Inflamação/imunologia , Inflamação/patologia , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/imunologia , Mecânica Respiratória/imunologia
15.
Respir Physiol Neurobiol ; 178(2): 304-14, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21763473

RESUMO

We tested the hypothesis that bone marrow-derived mononuclear cells (BMDMCs) at an early phase of cecal ligation and puncture (CLP)-induced sepsis may have lasting effects on: (1) lung mechanics and histology, (2) the structural remodelling of lung parenchyma, (3) lung, kidney, and liver cell apoptosis, and (4) pro- and anti-inflammatory cytokines and growth factors. At day 1, BMDMC significantly reduced mortality, as well as caspase-3, interleukin (IL)-6 and IL-1ß, vascular endothelial growth factor, platelet-derived growth factor, hepatocyte growth factor, and transforming growth factor-ß, but increased IL-10 mRNA expression in lung tissue in septic mice contributing to endothelium and epithelium alveolar repair and improvement of lung mechanics. BMDMC also prevented the increase of apoptotic cells in lung, liver, and kidney. At day 7, these early functional and morphological effects were preserved or further improved. In conclusion, in the present model of sepsis, the beneficial effects of early administration of BMDMCs on lung and distal organs were preserved, possibly by paracrine mechanisms.


Assuntos
Transplante de Medula Óssea , Leucócitos Mononucleares/transplante , Pulmão/cirurgia , Sepse/cirurgia , Animais , Transplante de Medula Óssea/métodos , Transplante de Células/métodos , Citocinas/biossíntese , Feminino , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sepse/metabolismo , Sepse/patologia , Fatores de Tempo
16.
Respir Physiol Neurobiol ; 175(1): 153-63, 2011 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-21050897

RESUMO

We hypothesized that bone marrow-derived mononuclear cells (BMDMC) would attenuate the remodeling process in a chronic allergic inflammation model. C57BL/6 mice were assigned to two groups. In OVA, mice were sensitized and repeatedly challenged with ovalbumin. Control mice (C) received saline under the same protocol. C and OVA were further randomized to receive BMDMC (2 × 106) or saline intravenously 24 h before the first challenge. BMDMC therapy reduced eosinophil infiltration, smooth muscle-specific actin expression, subepithelial fibrosis, and myocyte hypertrophy and hyperplasia, thus causing a decrease in airway hyperresponsiveness and lung mechanical parameters. BMDMC from green fluorescent protein (GFP)-transgenic mice transplanted into GFP-negative mice yielded lower engraftment in OVA. BMDMC increased insulin-like growth factor expression, but reduced interleukin-5, transforming growth factor-ß, platelet-derived growth factor, and vascular endothelial growth factor mRNA expression. In conclusion, in the present chronic allergic inflammation model, BMDMC therapy was an effective pre-treatment protocol that potentiated airway epithelial cell repair and prevented inflammatory and remodeling processes.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Células da Medula Óssea/fisiologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Tecido Conjuntivo/fisiologia , Leucócitos Mononucleares/fisiologia , Hipersensibilidade Respiratória/terapia , Análise de Variância , Animais , Líquido da Lavagem Broncoalveolar , Doença Crônica , Tecido Conjuntivo/ultraestrutura , Modelos Animais de Doenças , Feminino , Injeções Intravenosas/métodos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interleucina-5/metabolismo , Pulmão/patologia , Pulmão/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão/métodos , Ovalbumina/imunologia , Hipersensibilidade Respiratória/etiologia , Hipersensibilidade Respiratória/patologia
17.
Intensive Care Med ; 36(8): 1417-26, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20333356

RESUMO

PURPOSE: The goal of the study was to compare the effects of different assisted ventilation modes with pressure controlled ventilation (PCV) on lung histology, arterial blood gases, inflammatory and fibrogenic mediators in experimental acute lung injury (ALI). METHODS: Paraquat-induced ALI rats were studied. At 24 h, animals were anaesthetised and further randomized as follows (n = 6/group): (1) pressure controlled ventilation mode (PCV) with tidal volume (V (T)) = 6 ml/kg and inspiratory to expiratory ratio (I:E) = 1:2; (2) three assisted ventilation modes: (a) assist-pressure controlled ventilation (APCV1:2) with I:E = 1:2, (b) APCV1:1 with I:E = 1:1; and (c) biphasic positive airway pressure and pressure support ventilation (BiVent + PSV), and (3) spontaneous breathing without PEEP in air. PCV, APCV1:1, and APCV1:2 were set with P (insp) = 10 cmH(2)O and PEEP = 5 cmH(2)O. BiVent + PSV was set with two levels of CPAP [inspiratory pressure (P (High) = 10 cmH(2)O) and positive end-expiratory pressure (P (Low) = 5 cmH(2)O)] and inspiratory/expiratory times: T (High) = 0.3 s and T (Low) = 0.3 s. PSV was set as follows: 2 cmH(2)O above P (High) and 7 cmH(2)O above P (Low). All rats were mechanically ventilated in air and PEEP = 5 cmH(2)O for 1 h. RESULTS: Assisted ventilation modes led to better functional improvement and less lung injury compared to PCV. APCV1:1 and BiVent + PSV presented similar oxygenation levels, which were higher than in APCV1:2. Bivent + PSV led to less alveolar epithelium injury and lower expression of tumour necrosis factor-alpha, interleukin-6, and type III procollagen. CONCLUSIONS: In this experimental ALI model, assisted ventilation modes presented greater beneficial effects on respiratory function and a reduction in lung injury compared to PCV. Among assisted ventilation modes, Bi-Vent + PSV demonstrated better functional results with less lung damage and expression of inflammatory mediators.


Assuntos
Lesão Pulmonar Aguda/fisiopatologia , Pneumonia Associada à Ventilação Mecânica/fisiopatologia , Fibrose Pulmonar/metabolismo , Respiração Artificial/métodos , Lesão Pulmonar Aguda/metabolismo , Animais , Colágeno Tipo III/metabolismo , Citocinas/metabolismo , Monitorização Fisiológica/métodos , Distribuição Aleatória , Ratos , Ratos Wistar , Índice de Gravidade de Doença
18.
Respir Physiol Neurobiol ; 169(3): 271-81, 2009 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-19819351

RESUMO

The effects of prolonged recruitment manoeuvre (PRM) were compared with sustained inflation (SI) in paraquat-induced mild acute lung injury (ALI) in rats. Twenty-four hours after ALI induction, rats were anesthetized and mechanically ventilated with VT=6 ml/kg and positive end-expiratory pressure (PEEP)=5 cmH(2)O for 1h. SI was performed with an instantaneous pressure increase of 40 cmH(2)O that was sustained for 40s, while PRM was done by a step-wise increase in positive inspiratory pressure (PIP) of 15-20-25 cmH(2)O above a PEEP of 15 cm H(2)O (maximal PIP=40 cmH(2)O), with interposed periods of PIP=10 cmH(2)O above a PEEP=15 cmH(2)O. Lung static elastance and the amount of alveolar collapse were more reduced with PRM than SI, yielding improved oxygenation. Additionally, tumour necrosis factor-alpha, interleukin-6, interferon-gamma, and type III procollagen mRNA expressions in lung tissue and lung epithelial cell apoptosis decreased more in PRM. In conclusion, PRM improved lung function, with less damage to alveolar epithelium, resulting in reduced pulmonary injury.


Assuntos
Lesão Pulmonar Aguda/fisiopatologia , Lesão Pulmonar Aguda/terapia , Pulmão/patologia , Pulmão/ultraestrutura , Respiração com Pressão Positiva/métodos , Mecânica Respiratória/fisiologia , Lesão Pulmonar Aguda/patologia , Animais , Apoptose/fisiologia , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/fisiologia , Marcação In Situ das Extremidades Cortadas/métodos , Pulmão/metabolismo , Medidas de Volume Pulmonar , Microscopia Eletrônica de Transmissão/métodos , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Testes de Função Respiratória/métodos , Estatísticas não Paramétricas
19.
Cell Physiol Biochem ; 20(1-4): 83-90, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17595518

RESUMO

CFTR is a multifunctional protein of the ATP binding cassette family that may contribute to overall electrolyte homeostasis by acting as a chloride channel in the kidney. In renal tissues CFTR does not exists only in its full-length form, but also as a kidney-specific, truncated splice variant, TNR-CFTR. In this study we show that both forms of CFTR are regulated by thyroid hormones in rat renal tissue. Four groups of male rats were used: control, hypothyroid, hypothyroid with T(4) treatment and hyperthyroid rats. The hypothyroid rats showed a decrease of both CFTR and TNR-CFTR mRNAs (44%, and 49%, respectively, n=5; p<0.05) and proteins (30% and 37%, respectively, n=5, p<0.05) expressions, compared to control group. In hyperthyroid rats, a significant increase in both CFTR and TRN-CFTR mRNAs expressions (43% and 95%, n=5; p<0.05) and proteins (250% and 38%, respectively, n=5, p<0.05) was observed when compared to control group. Treatment of immortalized rat proximal tubule cells (IRPTC) with T(3) (10(-7)M) produced also an increase of CFTR mRNA expression (95%, n=5, p<0.05). Analysis of the promoter region of CFTR transfected to IRPTC showed that T(3) (10(-7) M) stimulates the CFTR promoter (38%, n=4, p<0.05).


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Rim/metabolismo , Hormônios Tireóideos/metabolismo , Processamento Alternativo , Animais , Sequência de Bases , Células Cultivadas , Primers do DNA/genética , Expressão Gênica/efeitos dos fármacos , Hipertireoidismo/genética , Hipertireoidismo/metabolismo , Hipotireoidismo/genética , Hipotireoidismo/metabolismo , Rim/efeitos dos fármacos , Masculino , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Tiroxina/sangue , Tiroxina/farmacologia , Transfecção , Tri-Iodotironina/farmacologia
20.
Pflugers Arch ; 444(1-2): 193-201, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11976932

RESUMO

It is well known that Na+ reabsorption in the kidney can be regulated by aldosterone. Although Cl- is the most abundant anion present in the extra cellular fluids the involvement of aldosterone in the regulation of Cl- conductance through Cl- channels at the molecular level is unknown. In this study, the effects of aldosterone and high-Na+ diet on the expression of ClC-2, a cell volume-, pH- and voltage-sensitive Cl- channel, was examined in the rat kidney. Total RNA isolated from Wistar rats fed a high-Na+ diet for 5 days, furosemide treatment, adrenalectomy and adrenalectomy with replacement of normal plasma levels of aldosterone were compared by the use of ribonuclease protection assay (RPA), and/or a semi-quantitative RT-PCR. The high-Na+ diet reduced renal mRNA and protein ClC-2 expression. The renal expression of ClC-2 mRNA decreased in adrenalectomized rats and was restored by plasma aldosterone replacement. In addition, the semi-quantitative RT-PCR in different segments of the nephron showed that these changes were secondary to the modulation of ClC-2 mRNA expression by aldosterone in the cortical and medullary segments of thick ascending limbs of Henle's loop. These results suggest that ClC-2 may be involved with aldosterone-induced Cl- transport in the kidney.


Assuntos
Aldosterona/farmacologia , Canais de Cloreto/biossíntese , Canais de Cloreto/genética , Rim/metabolismo , Cloreto de Sódio na Dieta/farmacologia , Adrenalectomia , Animais , Southern Blotting , Western Blotting , Diuréticos/farmacologia , Eletrólitos/metabolismo , Furosemida/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Rim/efeitos dos fármacos , Córtex Renal/efeitos dos fármacos , Córtex Renal/metabolismo , Medula Renal/efeitos dos fármacos , Medula Renal/metabolismo , Masculino , Néfrons/efeitos dos fármacos , Néfrons/metabolismo , Ensaios de Proteção de Nucleases , RNA/biossíntese , RNA/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA