Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 461(7267): E9; discussion E9-10, 2009 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-19847209

RESUMO

As with all spiders, tarantulas spin silk from specialized structures in the abdomen called spinnerets, which are key features unique to the group. Recently Gorb et al. reported that the zebra tarantula Aphonopelma seemanni also secretes silk from its feet, which might improve its ability to climb on vertical surfaces. Here we show that when the spinnerets are experimentally sealed, the zebra tarantula cannot secrete silk or similar threads, disagreeing with previous reports by Gorb et al.. Additional evidence also disagrees with leg secretion of silk.


Assuntos
Extremidades/fisiologia , Seda/biossíntese , Seda/metabolismo , Aranhas/anatomia & histologia , Aranhas/fisiologia , Abdome/anatomia & histologia , Abdome/fisiologia , Animais , Extremidades/anatomia & histologia , Cabelo , Reprodutibilidade dos Testes
2.
J Exp Biol ; 215(Pt 10): 1749-52, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22539742

RESUMO

Theraphosid tarantulas, like all other spiders, secrete silk from spigots on the abdominal spinnerets. A few years ago, it was proposed that the large tarantula Aphonopelma seemanni could extrude silk from specialized spigots on the tarsi to help adhesion to vertical surfaces. This suggestion was later questioned because silk was not observed after the spinnerets had been sealed. Recently, experiments with the tarantula Grammostola rosea again suggested tarsal silk secretion. All observations of the supposed tarsal silk were made in spiders with functional spinnerets, thus contamination with silk coming from the spinnerets could not be excluded. Recent morphological arguments also questioned putative tarsal spigots and proposed that they are actually contact chemoreceptors. We here test the supposed tarsal silk secretion in Aphonopelma seemanni, Avicularia avicularia, Brachypelma vagans and Grammostola mollicoma using similar experimental conditions as the previous authors, but with sealed spinnerets. Our results clearly demonstrate that when spinnerets are sealed, tarantulas do not show any tarsal silk secretion. We reinterpret those putative tarsal spigots and discuss possible evolutionary implications of these findings.


Assuntos
Seda , Aranhas/fisiologia , Animais , Comportamento Animal , Células Quimiorreceptoras/metabolismo , Feminino , Microscopia Confocal/métodos , Microscopia Eletrônica de Varredura/métodos , Movimento , Filogenia , Especificidade da Espécie , Propriedades de Superfície
3.
Artigo em Inglês | VETINDEX | ID: vti-690489

RESUMO

When two similar species co-occur in time and space, strong mechanisms isolating them from each other are expected. Acanthoscurria suina Pocock, 1903 and Eupalaestrus weijenberghi (Thorell, 1894) are two sympatric and synchronic tarantulas that inhabit burrows in Uruguay's meadows. Here we test how and when reproductive isolation operates between these species. We exposed females of each species simultaneously to two males: either one male of each species, or two males of the same species. Males courted females of both species. Contrary to expectations, however, females of A. suina responded more effusively to heterospecific than to conspecific males, whereas females of E. weijenberghi only responded to conspecific males. Clasping (prelude of mating) was only recorded for couples of the same species. Females of A. suina at first seem to prefer the stronger body vibrations performed by heterospecific courting males than by males of their own species.

4.
Artigo em Inglês | LILACS-Express | VETINDEX | ID: biblio-1504201

RESUMO

When two similar species co-occur in time and space, strong mechanisms isolating them from each other are expected. Acanthoscurria suina Pocock, 1903 and Eupalaestrus weijenberghi (Thorell, 1894) are two sympatric and synchronic tarantulas that inhabit burrows in Uruguay's meadows. Here we test how and when reproductive isolation operates between these species. We exposed females of each species simultaneously to two males: either one male of each species, or two males of the same species. Males courted females of both species. Contrary to expectations, however, females of A. suina responded more effusively to heterospecific than to conspecific males, whereas females of E. weijenberghi only responded to conspecific males. Clasping (prelude of mating) was only recorded for couples of the same species. Females of A. suina at first seem to prefer the stronger body vibrations performed by heterospecific courting males than by males of their own species.

5.
Artigo em Inglês | VETINDEX | ID: vti-441449

RESUMO

When two similar species co-occur in time and space, strong mechanisms isolating them from each other are expected. Acanthoscurria suina Pocock, 1903 and Eupalaestrus weijenberghi (Thorell, 1894) are two sympatric and synchronic tarantulas that inhabit burrows in Uruguay's meadows. Here we test how and when reproductive isolation operates between these species. We exposed females of each species simultaneously to two males: either one male of each species, or two males of the same species. Males courted females of both species. Contrary to expectations, however, females of A. suina responded more effusively to heterospecific than to conspecific males, whereas females of E. weijenberghi only responded to conspecific males. Clasping (prelude of mating) was only recorded for couples of the same species. Females of A. suina at first seem to prefer the stronger body vibrations performed by heterospecific courting males than by males of their own species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA