Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34470819

RESUMO

Polarized exocytosis is essential for many vital processes in eukaryotic cells, where secretory vesicles are targeted to distinct plasma membrane domains characterized by their specific lipid-protein composition. Heterooctameric protein complex exocyst facilitates the vesicle tethering to a target membrane and is a principal cell polarity regulator in eukaryotes. The architecture and molecular details of plant exocyst and its membrane recruitment have remained elusive. Here, we show that the plant exocyst consists of two modules formed by SEC3-SEC5-SEC6-SEC8 and SEC10-SEC15-EXO70-EXO84 subunits, respectively, documenting the evolutionarily conserved architecture within eukaryotes. In contrast to yeast and mammals, the two modules are linked by a plant-specific SEC3-EXO70 interaction, and plant EXO70 functionally dominates over SEC3 in the exocyst recruitment to the plasma membrane. Using an interdisciplinary approach, we found that the C-terminal part of EXO70A1, the canonical EXO70 isoform in Arabidopsis, is critical for this process. In contrast to yeast and animal cells, the EXO70A1 interaction with the plasma membrane is mediated by multiple anionic phospholipids uniquely contributing to the plant plasma membrane identity. We identified several evolutionary conserved EXO70 lysine residues and experimentally proved their importance for the EXO70A1-phospholipid interactions. Collectively, our work has uncovered plant-specific features of the exocyst complex and emphasized the importance of the specific protein-lipid code for the recruitment of peripheral membrane proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfolipídeos/metabolismo , Membrana Celular/metabolismo , Polaridade Celular , Citoplasma/metabolismo , Exocitose , Proteômica/métodos
2.
Plant Cell ; 32(9): 2951-2963, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32699172

RESUMO

Vesicle exocytosis underpins signaling and development in plants and is vital for cell expansion. Vesicle tethering and fusion are thought to occur sequentially, with tethering mediated by the exocyst and fusion driven by assembly of soluble NSF attachment protein receptor (SNARE) proteins from the vesicle membrane (R-SNAREs or vesicle-associated membrane proteins [VAMPs]) and the target membrane (Q-SNAREs). Interactions between exocyst and SNARE protein complexes are known, but their functional consequences remain largely unexplored. We now identify a hierarchy of interactions leading to secretion in Arabidopsis (Arabidopsis thaliana). Mating-based split-ubiquitin screens and in vivo Förster resonance energy transfer analyses showed that exocyst EXO70 subunits bind preferentially to cognate plasma membrane SNAREs, notably SYP121 and VAMP721. The exo70A1 mutant affected SNARE distribution and suppressed vesicle traffic similarly to the dominant-negative truncated protein SYP121ΔC, which blocks secretion at the plasma membrane. These phenotypes are consistent with the epistasis of exo70A1 in the exo70A1 syp121 double mutant, which shows decreased growth similar to exo70A1 single mutants. However, the exo70A1 vamp721 mutant showed a strong, synergy, suppressing growth and cell expansion beyond the phenotypic sum of the two single mutants. These data are best explained by a hierarchy of SNARE recruitment to the exocyst at the plasma membrane, dominated by the R-SNARE and plausibly with the VAMP721 longin domain as a nexus for binding.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas SNARE/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Exocitose/fisiologia , Transferência Ressonante de Energia de Fluorescência , Mutação , Plantas Geneticamente Modificadas , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Proteínas SNARE/genética
3.
J Exp Bot ; 73(3): 742-755, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34664667

RESUMO

In the reaction to non-adapted Blumeria graminis f. sp. hordei (Bgh), Arabidopsis thaliana leaf epidermal cells deposit cell wall reinforcements called papillae or seal fungal haustoria in encasements, both of which involve intensive exocytosis. A plant syntaxin, SYP121/PEN1, has been found to be of key importance for the timely formation of papillae, and the vesicle tethering complex exocyst subunit EXO70B2 has been found to contribute to their morphology. Here, we identify a specific role for the EXO70B2-containing exocyst complex in the papillae membrane domains important for callose deposition and GFP-SYP121 delivery to the focal attack sites, as well as its contribution to encasement formation. The mRuby2-EXO70B2 co-localizes with the exocyst core subunit SEC6 and GFP-SYP121 in the membrane domain of papillae, and EXO70B2 and SYP121 proteins have the capacity to directly interact. The exo70B2/syp121 double mutant produces a reduced number of papillae and haustorial encasements in response to Bgh, indicating an additive role of the exocyst in SYP121-coordinated non-host resistance. In summary, we report cooperation between the plant exocyst and a SNARE protein in penetration resistance against non-adapted fungal pathogens.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas de Transporte Vesicular
4.
Ann Bot ; 125(5): 775-784, 2020 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31250883

RESUMO

BACKGROUND AND AIMS: We have recently shown that an Arabidopsis thaliana double mutant of type III phosphatidylinositol-4-kinases (PI4Ks), pi4kß1ß2, constitutively accumulated a high level of salicylic acid (SA). By crossing this pi4kß1ß2 double mutant with mutants impaired in SA synthesis (such as sid2 impaired in isochorismate synthase) or transduction, we demonstrated that the high SA level was responsible for the dwarfism phenotype of the double mutant. Here we aimed to distinguish between the SA-dependent and SA-independent effects triggered by the deficiency in PI4Kß1 and PI4Kß2. METHODS: To achieve this we used the sid2pi4kß1ß2 triple mutant. High-throughput analyses of phytohormones were performed on this mutant together with pi4kß1ß2 and sid2 mutants and wild-type plants. Responses to pathogens, namely Hyaloperonospora arabidopsidis, Pseudomonas syringae and Botrytis cinerea, and also to the non-host fungus Blumeria graminis, were also determined. Callose accumulation was monitored in response to flagellin. KEY RESULTS: We show here the prominent role of high SA levels in influencing the concentration of many other tested phytohormones, including abscisic acid and its derivatives, the aspartate-conjugated form of indole-3-acetic acid and some cytokinins such as cis-zeatin. We show that the increased resistance of pi4kß1ß2 plants to the host pathogens H. arabidopsidis, P. syringae pv. tomato DC3000 and Bothrytis cinerea is dependent on accumulation of high SA levels. In contrast, accumulation of callose in pi4kß1ß2 after flagellin treatment was independent of SA. Concerning the response to Blumeria graminis, both callose accumulation and fungal penetration were enhanced in the pi4kß1ß2 double mutant compared to wild-type plants. Both of these processes occurred in an SA-independent manner. CONCLUSIONS: Our data extensively illustrate the influence of SA on other phytohormone levels. The sid2pi4kß1ß2 triple mutant revealed the role of PI4Kß1/ß2 per se, thus showing the importance of these enzymes in plant defence responses.


Assuntos
1-Fosfatidilinositol 4-Quinase , Proteínas de Arabidopsis/genética , Arabidopsis , Regulação da Expressão Gênica de Plantas , Mutação , Doenças das Plantas , Pseudomonas syringae , Ácido Salicílico
5.
Plant Physiol ; 176(3): 2040-2051, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29301954

RESUMO

Biogenesis of the plant secondary cell wall involves many important aspects, such as phenolic compound deposition and often silica encrustation. Previously, we demonstrated the importance of the exocyst subunit EXO70H4 for biogenesis of the trichome secondary cell wall, namely for deposition of the autofluorescent and callose-rich cell wall layer. Here, we reveal that EXO70H4-driven cell wall biogenesis is constitutively active in the mature trichome, but also can be activated elsewhere upon pathogen attack, giving this study a broader significance with an overlap into phytopathology. To address the specificity of EXO70H4 among the EXO70 family, we complemented the exo70H4-1 mutant by 18 different Arabidopsis (Arabidopsis thaliana) EXO70 paralogs subcloned under the EXO70H4 promoter. Only EXO70H4 had the capacity to rescue the exo70H4-1 trichome phenotype. Callose deposition phenotype of exo70H4-1 mutant is caused by impaired secretion of PMR4, a callose synthase responsible for the synthesis of callose in the trichome. PMR4 colocalizes with EXO70H4 on plasma membrane microdomains that do not develop in the exo70H4-1 mutant. Using energy-dispersive x-ray microanalysis, we show that both EXO70H4- and PMR4-dependent callose deposition in the trichome are essential for cell wall silicification.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glucosiltransferases/metabolismo , Subunidades Proteicas/metabolismo , Dióxido de Silício/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Flagelina/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucanos , Mutação/genética , Fenótipo , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos dos fármacos , Epiderme Vegetal/metabolismo , Domínios Proteicos , Subunidades Proteicas/química , Tricomas/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteínas de Transporte Vesicular/química
6.
Ann Bot ; 120(3): 437-446, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28911019

RESUMO

Background and Aims: Selected beneficial Pseudomonas spp. strains have the ability to influence root architecture in Arabidopsis thaliana by inhibiting primary root elongation and promoting lateral root and root hair formation. A crucial role for auxin in this long-term (1week), long-distance plant-microbe interaction has been demonstrated. Methods: Arabidopsis seedlings were cultivated in vitro on vertical plates and inoculated with pathogenic strains Pseudomonas syringae pv. maculicola (Psm) and P. syringae pv. tomato DC3000 (Pst), as well as Agrobacterium tumefaciens (Atu) and Escherichia coli (Eco). Root hair lengths were measured after 24 and 48h of direct exposure to each bacterial strain. Several Arabidopsis mutants with impaired responses to pathogens, impaired ethylene perception and defects in the exocyst vesicle tethering complex that is involved in secretion were also analysed. Key Results: Arabidopsis seedling roots infected with Psm or Pst responded similarly to when infected with plant growth-promoting rhizobacteria; root hair growth was stimulated and primary root growth was inhibited. Other plant- and soil-adapted bacteria induced similar root hair responses. The most compromised root hair growth stimulation response was found for the knockout mutants exo70A1 and ein2. The single immune pathways dependent on salicylic acid, jasmonic acid and PAD4 are not directly involved in root hair growth stimulation; however, in the mutual cross-talk with ethylene, they indirectly modify the extent of the stimulation of root hair growth. The Flg22 peptide does not initiate root hair stimulation as intact bacteria do, but pretreatment with Flg22 prior to Psm inoculation abolished root hair growth stimulation in an FLS2 receptor kinase-dependent manner. These early response phenomena are not associated with changes in auxin levels, as monitored with the pDR5::GUS auxin reporter. Conclusions: Early stimulation of root hair growth is an effect of an unidentified component of living plant pathogenic bacteria. The root hair growth response is triggered in the range of hours after bacterial contact with roots and can be modulated by FLS2 signalling. Bacterial stimulation of root hair growth requires functional ethylene signalling and an efficient exocyst-dependent secretory machinery.


Assuntos
Arabidopsis/microbiologia , Interações Hospedeiro-Patógeno , Raízes de Plantas/crescimento & desenvolvimento , Pseudomonas syringae , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Mutação , Raízes de Plantas/microbiologia , Proteínas Quinases/genética , Receptores de Superfície Celular/genética , Transdução de Sinais
7.
Plant Physiol ; 168(1): 120-31, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25767057

RESUMO

Arabidopsis (Arabidopsis thaliana) leaf trichomes are single-cell structures with a well-studied development, but little is understood about their function. Developmental studies focused mainly on the early shaping stages, and little attention has been paid to the maturation stage. We focused on the EXO70H4 exocyst subunit, one of the most up-regulated genes in the mature trichome. We uncovered EXO70H4-dependent development of the secondary cell wall layer, highly autofluorescent and callose rich, deposited only in the upper part of the trichome. The boundary is formed between the apical and the basal parts of mature trichome by a callose ring that is also deposited in an EXO70H4-dependent manner. We call this structure the Ortmannian ring (OR). Both the secondary cell wall layer and the OR are absent in the exo70H4 mutants. Ecophysiological aspects of the trichome cell wall thickening include interference with antiherbivore defense and heavy metal accumulation. Ultraviolet B light induces EXO70H4 transcription in a CONSTITUTIVE PHOTOMORPHOGENIC1-dependent way, resulting in stimulation of trichome cell wall thickening and the OR biogenesis. EXO70H4-dependent trichome cell wall hardening is a unique phenomenon, which may be conserved among a variety of the land plants. Our analyses support a concept that Arabidopsis trichome is an excellent model to study molecular mechanisms of secondary cell wall deposition.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Parede Celular/metabolismo , Glucanos/metabolismo , Subunidades Proteicas/metabolismo , Tricomas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Arabidopsis/efeitos da radiação , Arabidopsis/ultraestrutura , Parede Celular/ultraestrutura , Cobre/metabolismo , Citocinese/efeitos da radiação , Fluorescência , Mutação/genética , Tricomas/efeitos da radiação , Tricomas/ultraestrutura , Raios Ultravioleta
8.
Front Plant Sci ; 11: 960, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32676093

RESUMO

The heterooctameric vesicle-tethering complex exocyst is important for plant development, growth, and immunity. Multiple paralogs exist for most subunits of this complex; especially the membrane-interacting subunit EXO70 underwent extensive amplification in land plants, suggesting functional specialization. Despite this specialization, most Arabidopsis exo70 mutants are viable and free of developmental defects, probably as a consequence of redundancy among isoforms. Our in silico data-mining and modeling analysis, corroborated by transcriptomic experiments, pinpointed several EXO70 paralogs to be involved in plant biotic interactions. We therefore tested corresponding single and selected double mutant combinations (for paralogs EXO70A1, B1, B2, H1, E1, and F1) in their two biologically distinct responses to Pseudomonas syringae, root hair growth stimulation and general plant susceptibility. A shift in defense responses toward either increased or decreased sensitivity was found in several double mutants compared to wild type plants or corresponding single mutants, strongly indicating both additive and compensatory effects of exo70 mutations. In addition, our experiments confirm the lipid-binding capacity of selected EXO70s, however, without the clear relatedness to predicted C-terminal lipid-binding motifs. Our analysis uncovers that there is less of functional redundancy among isoforms than we could suppose from whole sequence phylogeny and that even paralogs with overlapping expression pattern and similar membrane-binding capacity appear to have exclusive roles in plant development and biotic interactions.

9.
Front Plant Sci ; 7: 260, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26973696

RESUMO

Even though resistance (R) genes are among the most studied components of the plant immunity, there remain still a lot of aspects to be explained about the regulation of their function. Many gain-of-function mutants of R genes and loss-of-function of their regulators often demonstrate up-regulated defense responses in combination with dwarf stature and/or spontaneous leaf lesions formation. For most of these mutants, phenotypes are a consequence of an ectopic activation of R genes. Based on the compilation and comparison of published results in this field, we have concluded that the constitutively activated defense phenotypes recurrently arise by disruption of tight, constitutive and multilevel negative control of some of R proteins that might involve also their targeting to the autophagy pathway. This mode of R protein regulation is supported also by protein-protein interactions listed in available databases, as well as in silico search for autophagy machinery interacting motifs. The suggested model could resolve some explanatory discrepancies found in the studies of the immunity responses of autophagy mutants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA