Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Sensors (Basel) ; 23(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37420751

RESUMO

One of the most-extensively studied problems in three-dimensional Computer Vision is "Perspective-n-Point" (PnP), which concerns estimating the pose of a calibrated camera, given a set of 3D points in the world and their corresponding 2D projections in an image captured by the camera. One solution method that ranks as very accurate and robust proceeds by reducing PnP to the minimization of a fourth-degree polynomial over the three-dimensional sphere S3. Despite a great deal of effort, there is no known fast method to obtain this goal. A very common approach is solving a convex relaxation of the problem, using "Sum Of Squares" (SOS) techniques. We offer two contributions in this paper: a faster (by a factor of roughly 10) solution with respect to the state-of-the-art, which relies on the polynomial's homogeneity; and a fast, guaranteed, easily parallelizable approximation, which makes use of a famous result of Hilbert.

2.
Analyst ; 142(21): 4067-4074, 2017 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-28993828

RESUMO

Machine learning methods have found many applications in Raman spectroscopy, especially for the identification of chemical species. However, almost all of these methods require non-trivial preprocessing such as baseline correction and/or PCA as an essential step. Here we describe our unified solution for the identification of chemical species in which a convolutional neural network is trained to automatically identify substances according to their Raman spectrum without the need for preprocessing. We evaluated our approach using the RRUFF spectral database, comprising mineral sample data. Superior classification performance is demonstrated compared with other frequently used machine learning algorithms including the popular support vector machine method.

3.
Proc Natl Acad Sci U S A ; 108(30): 12301-6, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21737750

RESUMO

To study the protein structure-function relationship, we propose a method to efficiently create three-dimensional maps of structure space using a very large dataset of > 30,000 Structural Classification of Proteins (SCOP) domains. In our maps, each domain is represented by a point, and the distance between any two points approximates the structural distance between their corresponding domains. We use these maps to study the spatial distributions of properties of proteins, and in particular those of local vicinities in structure space such as structural density and functional diversity. These maps provide a unique broad view of protein space and thus reveal previously undescribed fundamental properties thereof. At the same time, the maps are consistent with previous knowledge (e.g., domains cluster by their SCOP class) and organize in a unified, coherent representation previous observation concerning specific protein folds. To investigate the function-structure relationship, we measure the functional diversity (using the Gene Ontology controlled vocabulary) in local structural vicinities. Our most striking finding is that functional diversity varies considerably across structure space: The space has a highly diverse region, and diversity abates when moving away from it. Interestingly, the domains in this region are mostly alpha/beta structures, which are known to be the most ancient proteins. We believe that our unique perspective of structure space will open previously undescribed ways of studying proteins, their evolution, and the relationship between their structure and function.


Assuntos
Proteínas/química , Proteínas/fisiologia , Fenômenos Biofísicos , Bases de Dados de Proteínas , Modelos Biológicos , Modelos Químicos , Mapeamento de Peptídeos , Estrutura Terciária de Proteína
4.
IEEE Trans Image Process ; 33: 655-670, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38190674

RESUMO

Cross-modality recognition has many important applications in science, law enforcement and entertainment. Popular methods to bridge the modality gap include reducing the distributional differences of representations of different modalities, learning indistinguishable representations or explicit modality transfer. The first two approaches suffer from the loss of discriminant information while removing the modality-specific variations. The third one heavily relies on the successful modality transfer, could face catastrophic performance drop when explicit modality transfers are not possible or difficult. To tackle this problem, we proposed a compact encoder-decoder neural module (cmUNet) to learn modality-agnostic representations while retaining identity-related information. This is achieved through cross-modality transformation and in-modality reconstruction, enhanced by an adversarial/perceptual loss which encourages indistinguishability of representations in the original sample space. For cross-modality matching, we propose MarrNet where cmUNet is connected to a standard feature extraction network which takes as inputs the modality-agnostic representations and outputs similarity scores for matching. We validated our method on five challenging tasks, namely Raman-infrared spectrum matching, cross-modality person re-identification and heterogeneous (photo-sketch, visible-near infrared and visible-thermal) face recognition, where MarrNet showed superior performance compared to state-of-the-art methods. Furthermore, it is observed that a cross-modality matching method could be biased to extract discriminant information from partial or even wrong regions, due to incompetence of dealing with modality gaps, which subsequently leads to poor generalization. We show that robustness to occlusions can be an indicator of whether a method can well bridge the modality gap. This, to our knowledge, has been largely neglected in the previous works. Our experiments demonstrated that MarrNet exhibited excellent robustness against disguises and occlusions, and outperformed existing methods with a large margin (>10%). The proposed cmUNet is a meta-approach and can be used as a building block for various applications.

5.
IEEE Trans Pattern Anal Mach Intell ; 46(5): 3845-3861, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38150338

RESUMO

Nondestructive detection methods, based on vibrational spectroscopy, are vitally important in a wide range of applications including industrial chemistry, pharmacy and national defense. Recently, deep learning has been introduced into vibrational spectroscopy showing great potential. Different from images, text, etc. that offer large labeled data sets, vibrational spectroscopic data is very limited, which requires novel concepts beyond transfer and meta learning. To tackle this, we propose a task-enhanced augmentation network (TeaNet). The key component of TeaNet is a reconstruction module that inputs randomly masked spectra and outputs reconstructed samples that are similar to the original ones, but include additional variations learned from the domain. These augmented samples are used to train the classification model. The reconstruction and prediction parts are trained simultaneously, end-to-end with back-propagation. Results on both synthetic and real-world datasets verified the superiority of the proposed method. In the most difficult synthetic scenarios TeaNet outperformed CNN by 17%. We visualized and analysed the neuron responses of TeaNet and CNN, and found that TeaNet's ability to identify discriminant wavenumbers was excellent compared to CNN. Our approach is general and can be easily adapted to other domains, offering a solution to more accurate and interpretable few-shot learning.

6.
J Phys Chem Lett ; 14(34): 7603-7610, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37594383

RESUMO

Atomic-scale features, such as step edges and adatoms, play key roles in metal-molecule interactions and are critically important in heterogeneous catalysis, molecular electronics, and sensing applications. However, the small size and often transient nature of atomic-scale structures make studying such interactions challenging. Here, by combining single-molecule surface-enhanced Raman spectroscopy with machine learning, spectra are extracted of perturbed molecules, revealing the formation dynamics of adatoms in gold and palladium metal surfaces. This provides unique insight into atomic-scale processes, allowing us to resolve where such metallic protrusions form and how they interact with nearby molecules. Our technique paves the way to tailor metal-molecule interactions on an atomic level and assists in rational heterogeneous catalyst design.

7.
Sci Rep ; 12(1): 4736, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304572

RESUMO

Deep neural networks (DNNs) models have the potential to provide new insights in the study of cognitive processes, such as human decision making, due to their high capacity and data-driven design. While these models may be able to go beyond theory-driven models in predicting human behaviour, their opaque nature limits their ability to explain how an operation is carried out, undermining their usefulness as a scientific tool. Here we suggest the use of a DNN model as an exploratory tool to identify predictable and consistent human behaviour, and using explicit, theory-driven models, to characterise the high-capacity model. To demonstrate our approach, we trained an exploratory DNN model to predict human decisions in a four-armed bandit task. We found that this model was more accurate than two explicit models, a reward-oriented model geared towards choosing the most rewarding option, and a reward-oblivious model that was trained to predict human decisions without information about rewards. Using experimental simulations, we were able to characterise the exploratory model using the explicit models. We found that the exploratory model converged with the reward-oriented model's predictions when one option was clearly better than the others, but that it predicted pattern-based explorations akin to the reward-oblivious model's predictions. These results suggest that predictable decision patterns that are not solely reward-oriented may contribute to human decisions. Importantly, we demonstrate how theory-driven cognitive models can be used to characterise the operation of DNNs, making DNNs a useful explanatory tool in scientific investigation.


Assuntos
Aprendizado Profundo , Cognição , Tomada de Decisões , Humanos , Redes Neurais de Computação , Recompensa
8.
Artigo em Inglês | MEDLINE | ID: mdl-36343002

RESUMO

Coreset of a given dataset and loss function is usually a small weighed set that approximates this loss for every query from a given set of queries. Coresets have shown to be very useful in many applications. However, coresets' construction is done in a problem-dependent manner and it could take years to design and prove the correctness of a coreset for a specific family of queries. This could limit coresets' use in practical applications. Moreover, small coresets provably do not exist for many problems. To address these limitations, we propose a generic, learning-based algorithm for construction of coresets. Our approach offers a new definition of coreset, which is a natural relaxation of the standard definition and aims at approximating the average loss of the original data over the queries. This allows us to use a learning paradigm to compute a small coreset of a given set of inputs with respect to a given loss function using a training set of queries. We derive formal guarantees for the proposed approach. Experimental evaluation on deep networks and classic machine learning problems show that our learned coresets yield comparable or even better results than the existing algorithms with worst case theoretical guarantees (that may be too pessimistic in practice). Furthermore, our approach applied to deep network pruning provides the first coreset for a full deep network, i.e., compresses all the networks at once, and not layer by layer or similar divide-and-conquer methods.

9.
IEEE Trans Neural Netw Learn Syst ; 33(12): 7829-7841, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34166205

RESUMO

Model compression is crucial for the deployment of neural networks on devices with limited computational and memory resources. Many different methods show comparable accuracy of the compressed model and similar compression rates. However, the majority of the compression methods are based on heuristics and offer no worst case guarantees on the tradeoff between the compression rate and the approximation error for an arbitrarily new sample. We propose the first efficient structured pruning algorithm with a provable tradeoff between its compression rate and the approximation error for any future test sample. Our method is based on the coreset framework, and it approximates the output of a layer of neurons/filters by a coreset of neurons/filters in the previous layer and discards the rest. We apply this framework in a layer-by-layer fashion from the bottom to the top. Unlike previous works, our coreset is data-independent, meaning that it provably guarantees the accuracy of the function for any input [Formula: see text], including an adversarial one.


Assuntos
Compressão de Dados , Redes Neurais de Computação , Algoritmos , Neurônios
10.
J Phys Chem B ; 125(24): 6440-6450, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34105961

RESUMO

The deep learning revolution introduced a new and efficacious way to address computational challenges in a wide range of fields, relying on large data sets and powerful computational resources. In protein engineering, we consider the challenge of computationally predicting properties of a protein and designing sequences with these properties. Indeed, accurate and fast deep network oracles for different properties of proteins have been developed. These learn to predict a property from an amino acid sequence by training on large sets of proteins that have this property. In particular, deep networks can learn from the set of all known protein sequences to identify ones that are protein-like. A fundamental challenge when engineering sequences that are both protein-like and satisfy a desired property is that these are rare instances within the vast space of all possible ones. When searching for these very rare instances, one would like to use good sampling procedures. Sampling approaches that are decoupled from the prediction of the property or in which the predictor uses only post-sampling to identify good instances are less efficient. The alternative is to use sampling methods that are geared to generate sequences satisfying and/or optimizing the predictor's desired properties. Deep learning has a class of architectures, denoted as generative models, which offer the capability of sampling from the learned distribution of a predicted property. Here, we review the use of deep learning tools to find good sequences for protein engineering, including developing oracles/predictors of a property of the proteins and methods that sample from a distribution of protein-like sequences to optimize the desired property.


Assuntos
Aprendizado Profundo , Sequência de Aminoácidos , Engenharia de Proteínas , Proteínas/genética
12.
IEEE Trans Pattern Anal Mach Intell ; 29(1): 98-111, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17108386

RESUMO

We consider the problem of matching images to tell whether they come from the same scene viewed under different lighting conditions. We show that the surface characteristics determine the type of image comparison method that should be used. Previous work has shown the effectiveness of comparing the image gradient direction for surfaces with material properties that change rapidly in one direction. We show analytically that two other widely used methods, normalized correlation of small windows and comparison of multiscale oriented filters, essentially compute the same thing. Then, we show that for surfaces whose properties change more slowly, comparison of the output of whitening filters is most effective. This suggests that a combination of these strategies should be employed to compare general objects. We discuss indications that Gabor jets use such a mixed strategy effectively, and we propose a new mixed strategy. We validate our results on synthetic and real images.


Assuntos
Algoritmos , Inteligência Artificial , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Iluminação , Reconhecimento Automatizado de Padrão/métodos , Técnica de Subtração , Aumento da Imagem/métodos , Armazenamento e Recuperação da Informação/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
IEEE Trans Pattern Anal Mach Intell ; 38(4): 759-71, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26959677

RESUMO

A canonical problem in computer vision is category recognition (e.g., find all instances of human faces, cars etc., in an image). Typically, the input for training a binary classifier is a relatively small sample of positive examples, and a huge sample of negative examples, which can be very diverse, consisting of images from a large number of categories. The difficulty of the problem sharply increases with the dimension and size of the negative example set. We propose to alleviate this problem by applying a "hybrid" classifier, which replaces the negative samples by a prior, and then finds a hyperplane which separates the positive samples from this prior. The method is extended to kernel space and to an ensemble-based approach. The resulting binary classifiers achieve an identical or better classification rate than SVM, while requiring far smaller memory and lower computational complexity to train and apply.

14.
IEEE Trans Pattern Anal Mach Intell ; 35(3): 639-52, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22665722

RESUMO

We present a novel approach to pose estimation and model-based recognition of specular objects in difficult viewing conditions, such as low illumination, cluttered background, large highlights, and shadows that appear on the object of interest. In such challenging conditions, conventional features are unreliable. We show that under the assumption of a dominant light source, specular highlights produced by a known object can be used to establish correspondence between its image and the 3D model, and to verify the hypothesized pose and the identity of the object. Previous methods that use highlights for recognition make limiting assumptions such as known pose, scene-dependent calibration, simple shape, etc. The proposed method can efficiently recognize free-form specular objects in arbitrary pose and under unknown lighting direction. It uses only a single image of the object as its input and outputs object identity and the full pose. We have performed extensive experiments for both recognition and pose estimation accuracy on synthetic images and on real indoor and outdoor images.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA