RESUMO
Grasses are abundant feedstocks that can supply lignocellulosic biomass for production of cell-wall-derived chemicals. In grass cell walls, lignin is acylated with p-coumarate. These p-coumarate decorations arise from the incorporation of monolignol p-coumarate conjugates during lignification. A previous biochemical study identified a rice (Oryza sativa) BAHD acyltransferase (AT) with p-coumaroyl-CoA:monolignol transferase (PMT) activity in vitro. In this study, we determined that that enzyme, which we name OsPMT1 (also known as OsAT4), and the closely related OsPMT2 (OsAT3) harbor similar catalytic activity toward monolignols. We generated rice mutants deficient in either or both OsPMT1 and OsPMT2 by CRISPR/Cas9-mediated mutagenesis and subjected the mutants' cell walls to analysis using chemical and nuclear magnetic resonance methods. Our results demonstrated that OsPMT1 and OsPMT2 both function in lignin p-coumaroylation in the major vegetative tissues of rice. Notably, lignin-bound p-coumarate units were undetectable in the ospmt1 ospmt2-2 double-knockout mutant. Further, in-depth structural analysis of purified lignins from the ospmt1 ospmt2-2 mutant compared with control lignins from wild-type rice revealed stark changes in polymer structures, including alterations in syringyl/guaiacyl aromatic unit ratios and inter-monomeric linkage patterns, and increased molecular weights. Our results provide insights into lignin polymerization in grasses that will be useful for the optimization of bioengineering approaches for the effective use of biomass in biorefineries.
Assuntos
Oryza , Transferases , Transferases/análise , Transferases/metabolismo , Oryza/metabolismo , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Parede Celular/metabolismoRESUMO
Genome-editing tools such as the clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) system have become essential tools for increasing the efficiency and accuracy of plant breeding. Using such genome-editing tools on maize, one of the most important cereal crops of the world, will greatly benefit the agriculture and the mankind. Conventional genome-editing methods typically used for maize involve insertion of a Cas9-guide RNA expression cassette and a selectable marker in the genome DNA; however, using such methods, it is essential to eliminate the inserted DNA cassettes to avoid legislative concerns on gene-modified organisms. Another major hurdle for establishing an efficient and broadly applicable DNA-free genome-editing system for maize is presented by recalcitrant genotypes/cultivars, since cell/tissue culture and its subsequent regeneration into plantlets are crucial for producing transgenic and/or genome-edited maize. In this study, to establish a DNA-free genome-editing system for recalcitrant maize genotypes/cultivars, Cas9-gRNA ribonucleoproteins were directly delivered into zygotes isolated from the pollinated flowers of the maize-B73 cultivar. The zygotes successfully developed and were regenerated into genome-edited plantlets by co-culture with phytosulfokine, a peptide phytohormone. The method developed herein made it possible to obtain DNA- and selectable-marker-free genome-edited recalcitrant maize genotypes/cultivars with high efficiency. This method can advance the molecular breeding of maize and other important cereals, regardless of their recalcitrant characteristics.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Genoma de Planta , Zea mays , Zea mays/genética , Edição de Genes/métodos , Plantas Geneticamente Modificadas , Zigoto/metabolismo , Melhoramento Vegetal/métodos , RNA Guia de Sistemas CRISPR-Cas/genética , DNA de Plantas/genéticaRESUMO
Sulfur (S) is an essential macronutrient for plant growth and metabolism. SULTR2;1 is a low-affinity sulfate transporter facilitating the long-distance transport of sulfate in Arabidopsis. The physiological function of SULTR2;1 in the plant life cycle still needs to be determined. Therefore, we analyzed the sulfate transport, S-containing metabolite accumulation and plant growth using Arabidopsis SULTR2;1 disruption lines, sultr2;1-1 and sultr2;1-2, from seedling to mature growth stages to clarify the metabolic and physiological roles of SULTR2;1. We observed that sulfate distribution to the stems was affected in sultr2;1 mutants, resulting in decreased levels of sulfate, cysteine, glutathione (GSH) and total S in the stems, flowers and siliques; however, the GSH levels increased in the rosette leaves. This suggested the essential role of SULTR2;1 in sulfate transport from rosette leaves to the primary stem. In addition, sultr2;1 mutants unexpectedly bolted earlier than the wild-type without affecting the plant biomass. Correlation between GSH levels in rosette leaves and the bolting timing suggested that the rosette leaf GSH levels or limited sulfate transport to the early stem can trigger bolting. Overall, this study demonstrated the critical roles of SULTR2;1 in maintaining the S metabolite levels in the aerial part and transitioning from the vegetative to the reproductive growth phase.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Glutationa , Folhas de Planta , Caules de Planta , Sulfatos , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Sulfatos/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Caules de Planta/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Glutationa/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Transporte de Ânions/genética , Regulação da Expressão Gênica de Plantas , Mutação/genética , Transporte Biológico , Enxofre/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismoRESUMO
Cytokinins (CKs), a class of phytohormones with vital roles in growth and development, occur naturally with various side-chain structures, including N6-(Δ2-isopentenyl)adenine-, cis-zeatin- and trans-zeatin (tZ)-types. Recent studies in the model dicot plant Arabidopsis (Arabidopsis thaliana) have demonstrated that tZ-type CKs are biosynthesized via cytochrome P450 monooxygenase (P450) CYP735A and have a specific function in shoot growth promotion. Although the function of some of these CKs has been demonstrated in a few dicotyledonous plant species, the importance of these variations and their biosynthetic mechanism and function in monocots and in plants with distinctive side-chain profiles other than Arabidopsis, such as rice (Oryza sativa), remain elusive. In this study, we characterized CYP735A3 and CYP735A4 to investigate the role of tZ-type CKs in rice. Complementation test of the Arabidopsis CYP735A-deficient mutant and CK profiling of loss-of-function rice mutant cyp735a3 cyp735a4 demonstrated that CYP735A3 and CYP735A4 encode P450s required for tZ-type side-chain modification in rice. CYP735As are expressed in both roots and shoots. The cyp735a3 cyp735a4 mutants exhibited growth retardation concomitant with reduction in CK activity in both roots and shoots, indicating that tZ-type CKs function in growth promotion of both organs. Expression analysis revealed that tZ-type CK biosynthesis is negatively regulated by auxin, abscisic acid, and CK and positively by dual nitrogen nutrient signals, namely glutamine-related and nitrate-specific signals. These results suggest that tZ-type CKs control the growth of both roots and shoots in response to internal and environmental cues in rice.
Assuntos
Arabidopsis , Oryza , Citocininas/metabolismo , Zeatina/metabolismo , Oryza/genética , Oryza/metabolismo , Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/metabolismoRESUMO
Bioengineering approaches to modify lignin content and structure in plant cell walls have shown promise for facilitating biochemical conversions of lignocellulosic biomass into valuable chemicals. Despite numerous research efforts, however, the effect of altered lignin chemistry on the supramolecular assembly of lignocellulose and consequently its deconstruction in lignin-modified transgenic and mutant plants is not fully understood. In this study, we aimed to close this gap by analyzing lignin-modified rice (Oryza sativa L.) mutants deficient in 5-HYDROXYCONIFERALDEHYDE O-METHYLTRANSFERASE (CAldOMT) and CINNAMYL ALCOHOL DEHYDROGENASE (CAD). A set of rice mutants harboring knockout mutations in either or both OsCAldOMT1 and OsCAD2 was generated in part by genome editing and subjected to comparative cell wall chemical and supramolecular structure analyses. In line with the proposed functions of CAldOMT and CAD in grass lignin biosynthesis, OsCAldOMT1-deficient mutant lines produced altered lignins depleted of syringyl and tricin units and incorporating noncanonical 5-hydroxyguaiacyl units, whereas OsCAD2-deficient mutant lines produced lignins incorporating noncanonical hydroxycinnamaldehyde-derived units. All tested OsCAldOMT1- and OsCAD2-deficient mutants, especially OsCAldOMT1-deficient lines, displayed enhanced cell wall saccharification efficiency. Solid-state nuclear magnetic resonance (NMR) and X-ray diffraction analyses of rice cell walls revealed that both OsCAldOMT1- and OsCAD2 deficiencies contributed to the disruptions of the cellulose crystalline network. Further, OsCAldOMT1 deficiency contributed to the increase of the cellulose molecular mobility more prominently than OsCAD2 deficiency, resulting in apparently more loosened lignocellulose molecular assembly. Such alterations in cell wall chemical and supramolecular structures may in part account for the variations of saccharification performance of the OsCAldOMT1- and OsCAD2-deficient rice mutants.
Assuntos
Lignina , Oryza , Lignina/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Mutação/genética , Parede Celular/metabolismoRESUMO
Mammalian peptide hormones propagate extracellular stimuli from sensing tissues to appropriate targets to achieve optimal growth maintenance 1 . In land plants, root-to-shoot signalling is important to prevent water loss by transpiration and to adapt to water-deficient conditions 2, 3 . The phytohormone abscisic acid has a role in the regulation of stomatal movement to prevent water loss 4 . However, no mobile signalling molecules have yet been identified that can trigger abscisic acid accumulation in leaves. Here we show that the CLAVATA3/EMBRYO-SURROUNDING REGION-RELATED 25 (CLE25) peptide transmits water-deficiency signals through vascular tissues in Arabidopsis, and affects abscisic acid biosynthesis and stomatal control of transpiration in association with BARELY ANY MERISTEM (BAM) receptors in leaves. The CLE25 gene is expressed in vascular tissues and enhanced in roots in response to dehydration stress. The root-derived CLE25 peptide moves from the roots to the leaves, where it induces stomatal closure by modulating abscisic acid accumulation and thereby enhances resistance to dehydration stress. BAM receptors are required for the CLE25 peptide-induced dehydration stress response in leaves, and the CLE25-BAM module therefore probably functions as one of the signalling molecules for long-distance signalling in the dehydration response.
Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Estômatos de Plantas/metabolismo , Transdução de Sinais , Ácido Abscísico/biossíntese , Proteínas de Arabidopsis/metabolismo , Sistemas CRISPR-Cas , Desidratação , Dioxigenases/metabolismo , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mutação , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Água/metabolismoRESUMO
Cytokinin plays an important role in plant stress responses via a multistep signaling pathway, involving the histidine phosphotransfer proteins (HPs). In Arabidopsis thaliana, the AHP2, AHP3 and AHP5 proteins are known to affect drought responses; however, the role of AHP4 in drought adaptation remains undetermined. In the present study, using a loss-of-function approach we showed that AHP4 possesses an important role in the response of Arabidopsis to drought. This is evidenced by the higher survival rates of ahp4 than wild-type (WT) plants under drought conditions, which is accompanied by the downregulated AHP4 expression in WT during periods of dehydration. Comparative transcriptome analysis of ahp4 and WT plants revealed AHP4-mediated expression of several dehydration- and/or abscisic acid-responsive genes involved in modulation of various physiological and biochemical processes important for plant drought acclimation. In comparison with WT, ahp4 plants showed increased wax crystal accumulation in stems, thicker cuticles in leaves, greater sensitivity to exogenous abscisic acid at germination, narrow stomatal apertures, heightened leaf temperatures during dehydration, and longer root length under osmotic stress. In addition, ahp4 plants showed greater photosynthetic efficiency, lower levels of reactive oxygen species, reduced electrolyte leakage and lipid peroxidation, and increased anthocyanin contents under drought, when compared with WT. These differences displayed in ahp4 plants are likely due to upregulation of genes that encode enzymes involved in reactive oxygen species scavenging and non-enzymatic antioxidant metabolism. Overall, our findings suggest that AHP4 plays a crucial role in plant drought adaptation.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Antocianinas/metabolismo , Antioxidantes/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Desidratação , Secas , Regulação da Expressão Gênica de Plantas , Histidina/genética , Histidina/metabolismo , Plantas Geneticamente Modificadas/genética , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/genéticaRESUMO
Since its first appearance, CRISPR-Cas9 has been developed extensively as a programmable genome-editing tool, opening a new era in plant genome engineering. However, CRISPR-Cas9 still has some drawbacks, such as limitations of the protospacer-adjacent motif (PAM) sequence, target specificity, and the large size of the cas9 gene. To combat invading bacterial phages and plasmid DNAs, bacteria and archaea have diverse and unexplored CRISPR-Cas systems, which have the potential to be developed as a useful genome editing tools. Recently, discovery and characterization of additional CRISPR-Cas systems have been reported. Among them, several CRISPR-Cas systems have been applied successfully to plant and human genome editing. For example, several groups have achieved genome editing using CRISPR-Cas type I-D and type I-E systems, which had never been applied for genome editing previously. In addition to higher specificity and recognition of different PAM sequences, recently developed CRISPR-Cas systems often provide unique characteristics that differ from well-known Cas proteins such as Cas9 and Cas12a. For example, type I CRISPR-Cas10 induces small indels and bi-directional long-range deletions ranging up to 7.2 kb in tomatoes (Solanum lycopersicum L.). Type IV CRISPR-Cas13 targets RNA, not double-strand DNA, enabling highly specific knockdown of target genes. In this article, we review the development of CRISPR-Cas systems, focusing especially on their application to plant genome engineering. Recent CRISPR-Cas tools are helping expand our plant genome engineering toolbox.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Genoma de Planta/genética , Humanos , Plantas/genéticaRESUMO
The 4-coumarate:coenzyme A ligase (4CL) is a key enzyme that contributes to channeling metabolic flux in the cinnamate/monolignol pathway, leading to the production of monolignols, p-hydroxycinnamates, and a flavonoid tricin, the major building blocks of lignin polymer in grass cell walls. Vascular plants often contain multiple 4CL genes; however, the contribution of each 4CL isoform to lignin biosynthesis remains unclear, especially in grasses. In this study, we characterized the functions of two rice (Oryza sativa L.) 4CL isoforms (Os4CL3 and Os4CL4) primarily by analyzing the cell wall chemical structures of rice mutants generated by CRISPR/Cas9-mediated targeted mutagenesis. A series of chemical and nuclear magnetic resonance analyses revealed that loss-of-function of Os4CL3 and Os4CL4 differently altered the composition of lignin polymer units. Loss of function of Os4CL3 induced marked reductions in the major guaiacyl and syringyl lignin units derived from both the conserved non-γ-p-coumaroylated and the grass-specific γ-p-coumaroylated monolignols, with more prominent reductions in guaiacyl units than in syringyl units. In contrast, the loss-of-function mutation to Os4CL4 primarily decreased the abundance of the non-γ-p-coumaroylated guaiacyl units. Loss-of-function of Os4CL4, but not of Os4CL3, reduced the grass-specific lignin-bound tricin units, indicating that Os4CL4 plays a key role not only in monolignol biosynthesis but also in the biosynthesis of tricin used for lignification. Further, the loss-of-function of Os4CL3 and Os4CL4 notably reduced cell-wall-bound ferulates, indicating their roles in cell wall feruloylation. Overall, this study demonstrates the overlapping but divergent roles of 4CL isoforms during the coordinated production of various lignin monomers.
Assuntos
Oryza , Oryza/metabolismo , Lignina/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Parede Celular/metabolismo , Mutação/genéticaRESUMO
Adoption of CRISPR-Cas systems, such as CRISPR-Cas9 and CRISPR-Cas12a, has revolutionized genome engineering in recent years; however, application of genome editing with CRISPR type I-the most abundant CRISPR system in bacteria-remains less developed. Type I systems, such as type I-E, and I-F, comprise the CRISPR-associated complex for antiviral defense ('Cascade': Cas5, Cas6, Cas7, Cas8 and the small subunit) and Cas3, which degrades the target DNA; in contrast, for the sub-type CRISPR-Cas type I-D, which lacks a typical Cas3 nuclease in its CRISPR locus, the mechanism of target DNA degradation remains unknown. Here, we found that Cas10d is a functional nuclease in the type I-D system, performing the role played by Cas3 in other CRISPR-Cas type I systems. The type I-D system can be used for targeted mutagenesis of genomic DNA in human cells, directing both bi-directional long-range deletions and short insertions/deletions. Our findings suggest the CRISPR-Cas type I-D system as a unique effector pathway in CRISPR that can be repurposed for genome engineering in eukaryotic cells.
Assuntos
Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Endodesoxirribonucleases/metabolismo , Edição de Genes , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/genética , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Células HEK293 , Humanos , Mutagênese , MutaçãoRESUMO
Functional analyses of various strigolactone-deficient mutants have demonstrated that strigolactones enhance drought resistance; however, the mechanistic involvement of the strigolactone receptor DWARF14 (D14) in this trait remains elusive. In this study, loss-of-function analysis of the D14 gene in Arabidopsis thaliana revealed that d14 mutant plants were more drought-susceptible than wild-type plants, which was associated with their larger stomatal aperture, slower abscisic acid (ABA)-mediated stomatal closure, lower anthocyanin content and delayed senescence under drought stress. Transcriptome analysis revealed a consistent alteration in the expression levels of many genes related to the observed physiological and biochemical changes in d14 plants when compared with the wild type under normal and dehydration conditions. A comparative drought resistance assay confirmed that D14 plays a less critical role in Arabidopsis drought resistance than its paralog karrikin receptor KARRIKIN INSENSITIVE 2 (KAI2). In-depth comparative analyses of the single mutants d14 and kai2 and the double mutant d14 kai2, in relation to various drought resistance-associated mechanisms, revealed that D14 and KAI2 exhibited a similar effect on stomatal closure. On the other hand, D14 had a lesser role in the maintenance of cell membrane integrity, leaf cuticle structure and ABA-induced leaf senescence, but a greater role in drought-induced anthocyanin biosynthesis, than KAI2. Interestingly, a possible additive relationship between D14 and KAI2 could be observed in regulating cell membrane integrity and leaf cuticle development. In addition, our findings also suggest the existence of a complex interaction between the D14 and ABA signaling pathways in the adaptation of Arabidopsis to drought.
Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Hidrolases/fisiologia , Receptores de Superfície Celular/fisiologia , Ácido Abscísico/metabolismo , Adaptação Fisiológica , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Desidratação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hidrolases/metabolismo , Reguladores de Crescimento de Plantas , Receptores de Superfície Celular/metabolismoRESUMO
The sessile nature of plants has driven their evolution to cope flexibly with ever-changing surrounding environments. The development of stress tolerance traits is complex, and a broad range of cellular processes are involved. Recent studies have revealed that sugar transporters contribute to environmental stress tolerance in plants, suggesting that sugar flow is dynamically fluctuated towards optimization of cellular conditions in adverse environments. Here, we highlight sugar compartmentation mediated by sugar transporters as an adaptation strategy against biotic and abiotic stresses. Competition for sugars between host plants and pathogens shapes their evolutionary arms race. Pathogens, which rely on host-derived carbon, manipulate plant sugar transporters to access sugars easily, while plants sequester sugars from pathogens by enhancing sugar uptake activity. Furthermore, we discuss pathogen tactics to circumvent sugar competition with host plants. Sugar transporters also play a role in abiotic stress tolerance. Exposure to abiotic stresses such as cold or drought stress induces sugar accumulation in various plants. We also discuss how plants allocate sugars under such conditions. Collectively, these findings are relevant to basic plant biology as well as potential applications in agriculture, and provide opportunities to improve crop yield for a growing population.
Assuntos
Proteínas de Plantas/metabolismo , Plantas/química , Estresse Fisiológico/genética , Açúcares/química , Adaptação FisiológicaRESUMO
Breeding approaches to enrich lignins in biomass could be beneficial to improving the biorefinery process because lignins increase biomass heating value and represent a potent source of valuable aromatic chemicals. However, despite the fact that grasses are promising lignocellulose feedstocks, limited information is yet available for molecular-breeding approaches to upregulate lignin biosynthesis in grass species. In this study, we generated lignin-enriched transgenic rice (Oryza sativa), a model grass species, via targeted mutagenesis of the transcriptional repressor OsMYB108 using CRISPR/Cas9-mediated genome editing. The OsMYB108-knockout rice mutants displayed increased expressions of lignin biosynthetic genes and enhanced lignin deposition in culm cell walls. Chemical and two-dimensional nuclear magnetic resonance (NMR) analyses revealed that the mutant cell walls were preferentially enriched in γ-p-coumaroylated and tricin lignin units, both of which are typical and unique components in grass lignins. NMR analysis also showed that the relative abundances of major lignin linkage types were altered in the OsMYB108 mutants.
Assuntos
Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Oryza/genética , Propionatos/metabolismo , Fatores de Transcrição/metabolismo , Biomassa , Sistemas CRISPR-Cas , Parede Celular/química , Parede Celular/metabolismo , Ácidos Cumáricos , Edição de Genes , Redes Reguladoras de Genes , Lignina/química , Mutação com Perda de Função , Oryza/química , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética , Regulação para CimaRESUMO
The aromatic composition of lignin is an important trait that greatly affects the usability of lignocellulosic biomass. We previously identified a rice (Oryza sativa) gene encoding coniferaldehyde 5-hydroxylase (OsCAld5H1), which was effective in modulating syringyl (S)/guaiacyl (G) lignin composition ratio in rice, a model grass species. Previously characterized OsCAld5H1-knockdown rice lines, which were produced via an RNA-interference approach, showed augmented G lignin units yet contained considerable amounts of residual S lignin units. In this study, to further investigate the effect of suppression of OsCAld5H1 on rice lignin structure, we generated loss-of-function mutants of OsCAld5H1 using the CRISPR/Cas9-mediated genome editing system. Homozygous OsCAld5H1-knockout lines harboring anticipated frame-shift mutations in OsCAld5H1 were successfully obtained. A series of wet-chemical and two-dimensional NMR analyses on cell walls demonstrated that although lignins in the mutant were predictably enriched in G units all the tested mutant lines produced considerable numbers of S units. Intriguingly, lignin γ-p-coumaroylation analysis by the derivatization followed by reductive cleavage method revealed that enrichment of G units in lignins of the mutants was limited to the non-γ-p-coumaroylated units, whereas grass-specific γ-p-coumaroylated lignin units were almost unaffected. Gene expression analysis indicated that no homologous genes of OsCAld5H1 were overexpressed in the mutants. These data suggested that CAld5H is mainly involved in the production of non-γ-p-coumaroylated S lignin units, common in both eudicots and grasses, but not in the production of grass-specific γ-p-coumaroylated S units in rice.
Assuntos
Acroleína/análogos & derivados , Lignina/metabolismo , Oxigenases de Função Mista/metabolismo , Oryza/genética , Acroleína/metabolismo , Biomassa , Sistemas CRISPR-Cas , Parede Celular/metabolismo , Ácidos Cumáricos , Mutação com Perda de Função , Oxigenases de Função Mista/genética , Oryza/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Propionatos/metabolismoRESUMO
Traditionally, generation of new plants with improved or desirable features has relied on laborious and time-consuming breeding techniques. Genome-editing technologies have led to a new era of genome engineering, enabling an effective, precise, and rapid engineering of the plant genomes. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) has emerged as a new genome-editing tool, extensively applied in various organisms, including plants. The use of CRISPR/Cas9 allows generating transgene-free genome-edited plants ("null segregants") in a short period of time. In this review, we provide a critical overview of the recent advances in CRISPR/Cas9 derived technologies for inducing mutations at target sites in the genome and controlling the expression of target genes. We highlight the major breakthroughs in applying CRISPR/Cas9 to plant engineering, and challenges toward the production of null segregants. We also provide an update on the efforts of engineering Cas9 proteins, newly discovered Cas9 variants, and novel CRISPR/Cas systems for use in plants. The application of CRISPR/Cas9 and related technologies in plant engineering will not only facilitate molecular breeding of crop plants but also accelerate progress in basic research.
Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Genoma de Planta/genética , Plantas Geneticamente Modificadas/genéticaRESUMO
Drought causes substantial reductions in crop yields worldwide. Therefore, we set out to identify new chemical and genetic factors that regulate drought resistance in Arabidopsis thaliana. Karrikins (KARs) are a class of butenolide compounds found in smoke that promote seed germination, and have been reported to improve seedling vigor under stressful growth conditions. Here, we discovered that mutations in KARRIKIN INSENSITIVE2 (KAI2), encoding the proposed karrikin receptor, result in hypersensitivity to water deprivation. We performed transcriptomic, physiological and biochemical analyses of kai2 plants to understand the basis for KAI2-regulated drought resistance. We found that kai2 mutants have increased rates of water loss and drought-induced cell membrane damage, enlarged stomatal apertures, and higher cuticular permeability. In addition, kai2 plants have reduced anthocyanin biosynthesis during drought, and are hyposensitive to abscisic acid (ABA) in stomatal closure and cotyledon opening assays. We identified genes that are likely associated with the observed physiological and biochemical changes through a genome-wide transcriptome analysis of kai2 under both well-watered and dehydration conditions. These data provide evidence for crosstalk between ABA- and KAI2-dependent signaling pathways in regulating plant responses to drought. A comparison of the strigolactone receptor mutant d14 (DWARF14) to kai2 indicated that strigolactones also contributes to plant drought adaptation, although not by affecting cuticle development. Our findings suggest that chemical or genetic manipulation of KAI2 and D14 signaling may provide novel ways to improve drought resistance.
Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolases/genética , Hidrolases/metabolismo , Ácido Abscísico , Antocianinas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Transporte/genética , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Germinação/genética , Plântula/genética , Transdução de SinaisRESUMO
Lotus japonicus is an important model legume plant in several fields of research, such as secondary (specialized) metabolism and symbiotic nodulation. This plant accumulates triterpenoids; however, less information regarding its composition, content and biosynthesis is available compared with Medicago truncatula and Glycine max. In this study, we analyzed the triterpenoid content and composition of L. japonicus. Lotus japonicus accumulated C-28-oxidized triterpenoids (ursolic, betulinic and oleanolic acids) and soyasapogenols (soyasapogenol B, A and E) in a tissue-dependent manner. We identified an oxidosqualene cyclase (OSC) and two cytochrome P450 enzymes (P450s) involved in triterpenoid biosynthesis using a yeast heterologous expression system. OSC9 was the first enzyme derived from L. japonicus that showed α-amyrin (a precursor of ursolic acid)-producing activity. CYP716A51 showed triterpenoid C-28 oxidation activity. LjCYP93E1 converted ß-amyrin into 24-hydroxy-ß-amyrin, a metabolic intermediate of soyasapogenols. The involvement of the identified genes in triterpenoid biosynthesis in L. japonicus plants was evaluated by quantitative real-time PCR analysis. Furthermore, gene loss-of-function analysis of CYP716A51 and LjCYP93E1 was conducted. The cyp716a51-mutant L. japonicus hairy roots generated by the genome-editing technique produced no C-28 oxidized triterpenoids. Likewise, the complete abolition of soyasapogenols and soyasaponin I was observed in mutant plants harboring Lotus retrotransposon 1 (LORE1) in LjCYP93E1. These results indicate that the activities of these P450 enzymes are essential for triterpenoid biosynthesis in L. japonicus. This study increases our understanding of triterpenoid biosynthesis in leguminous plants and provides information that will facilitate further studies of the physiological functions of triterpenoids using L. japonicus.
Assuntos
Lotus/metabolismo , Triterpenos/metabolismo , Regulação da Expressão Gênica de Plantas , Ácido Oleanólico/metabolismo , Proteínas de Plantas/metabolismo , Ácido UrsólicoRESUMO
Dioecy is a plant mating system in which individuals of a species are either male or female. Although many flowering plants evolved independently from hermaphroditism to dioecy, the molecular mechanism underlying this transition remains largely unknown. Sex determination in the dioecious plant Asparagus officinalis is controlled by X and Y chromosomes; the male and female karyotypes are XY and XX, respectively. Transcriptome analysis of A. officinalis buds showed that a MYB-like gene, Male Specific Expression 1 (MSE1), is specifically expressed in males. MSE1 exhibits tight linkage with the Y chromosome, specific expression in early anther development and loss of function on the X chromosome. Knockout of the MSE1 orthologue in Arabidopsis induces male sterility. Thus, MSE1 acts in sex determination in A. officinalis.
Assuntos
Asparagus/genética , Proteínas de Plantas/genética , Processos de Determinação Sexual , Fatores de Transcrição/genética , Arabidopsis/genética , Asparagus/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/biossínteseRESUMO
DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN2A (DREB2A) is a key transcription factor for drought and heat stress tolerance in Arabidopsis thaliana. DREB2A induces the expression of dehydration- and heat stress-inducible genes under the corresponding stress conditions. Target gene selectivity is assumed to require stress-specific posttranslational regulation, but the mechanisms of this process are not yet understood. Here, we identified DNA POLYMERASE II SUBUNIT B3-1 (DPB3-1), which was previously annotated as NUCLEAR FACTOR Y, SUBUNIT C10 (NF-YC10), as a DREB2A interactor, through a yeast two-hybrid screen. The overexpression of DPB3-1 in Arabidopsis enhanced the expression of a subset of heat stress-inducible DREB2A target genes but did not affect dehydration-inducible genes. Similarly, the depletion of DPB3-1 expression resulted in reduced expression of heat stress-inducible genes. Interaction and expression pattern analyses suggested the existence of a trimer comprising NF-YA2, NF-YB3, and DPB3-1 that could synergistically activate a promoter of the heat stress-inducible gene with DREB2A in protoplasts. These results suggest that DPB3-1 could form a transcriptional complex with NF-YA and NF-YB subunits and that the identified trimer enhances heat stress-inducible gene expression during heat stress responses in cooperation with DREB2A. We propose that the identified trimer contributes to the target gene selectivity of DREB2A under heat stress conditions.
Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , DNA Polimerase II/fisiologia , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , Técnicas de Silenciamento de Genes , Regiões Promotoras Genéticas , Protoplastos/metabolismo , Técnicas do Sistema de Duplo-HíbridoRESUMO
This report provides direct evidence that strigolactone (SL) positively regulates drought and high salinity responses in Arabidopsis. Both SL-deficient and SL-response [more axillary growth (max)] mutants exhibited hypersensitivity to drought and salt stress, which was associated with shoot- rather than root-related traits. Exogenous SL treatment rescued the drought-sensitive phenotype of the SL-deficient mutants but not of the SL-response mutant, and enhanced drought tolerance of WT plants, confirming the role of SL as a positive regulator in stress response. In agreement with the drought-sensitive phenotype, max mutants exhibited increased leaf stomatal density relative to WT and slower abscisic acid (ABA)-induced stomatal closure. Compared with WT, the max mutants exhibited increased leaf water loss rate during dehydration and decreased ABA responsiveness during germination and postgermination. Collectively, these results indicate that cross-talk between SL and ABA plays an important role in integrating stress signals to regulate stomatal development and function. Additionally, a comparative microarray analysis of the leaves of the SL-response max2 mutant and WT plants under normal and dehydrative conditions revealed an SL-mediated network controlling plant responses to stress via many stress- and/or ABA-responsive and cytokinin metabolism-related genes. Our results demonstrate that plants integrate multiple hormone-response pathways for adaptation to environmental stress. Based on our results, genetic modulation of SL content/response could be applied as a potential approach to reduce the negative impact of abiotic stress on crop productivity.