Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(2): e17149, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38342970

RESUMO

Piñon-juniper (PJ) woodlands are a dominant community type across the Intermountain West, comprising over a million acres and experiencing critical effects from increasing wildfire. Large PJ mortality and regeneration failure after catastrophic wildfire have elevated concerns about the long-term viability of PJ woodlands. Thinning is increasingly used to safeguard forests from fire and in an attempt to increase climate resilience. We have only a limited understanding of how fire and thinning will affect the structure and function of PJ ecosystems. Here, we examined vegetation structure, microclimate conditions, and PJ regeneration dynamics following ~20 years post-fire and thinning treatments. We found that burned areas had undergone a state shift that did not show signs of returning to their previous state. This shift was characterized by (1) distinct plant community composition dominated by grasses; (2) a lack of PJ recruitment; (3) a decrease in the sizes of interspaces in between plants; (4) lower abundance of late successional biological soil crusts; (5) lower mean and minimum daily soil moisture values; (6) lower minimum daily vapor pressure deficit; and (7) higher photosynthetically active radiation. Thinning created distinct plant communities and served as an intermediate between intact and burned communities. More intensive thinning decreased PJ recruitment and late successional biocrust cover. Our results indicate that fire has the potential to create drier and more stressful microsite conditions, and that, in the absence of active management following fire, there may be shifts to persistent ecological states dominated by grasses. Additionally, more intensive thinning had a larger impact on community structure and recruitment than less intensive thinning, suggesting that careful consideration of goals could help avoid unintended consequences. While our results indicate the vulnerability of PJ ecosystems to fire, they also highlight management actions that could be adapted to create conditions that promote PJ re-establishment.


Assuntos
Incêndios , Juniperus , Pinus , Ecossistema , Florestas , Solo
2.
Sci Adv ; 10(30): eadm9732, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058780

RESUMO

Variability of the terrestrial global carbon sink is largely determined by the response of dryland productivity to annual precipitation. Despite extensive disturbance in drylands, how disturbance alters productivity-precipitation relationships remains poorly understood. Using remote-sensing to pair more than 5600 km of natural gas pipeline corridors with neighboring undisturbed areas in North American drylands, we found that disturbance reduced average annual production 6 to 29% and caused up to a fivefold increase in the sensitivity of net primary productivity (NPP) to interannual variation in precipitation. Disturbance impacts were larger and longer-lasting at locations with higher precipitation (>450 mm mean annual precipitation). Disturbance effects on NPP dynamics were mostly explained by shifts from woody to herbaceous vegetation. Severe disturbance will amplify effects of increasing precipitation variability on NPP in drylands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA