Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 49(23): 4852-63, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20469888

RESUMO

Protein citrullination has been shown to regulate numerous physiological pathways (e.g., the innate immune response and gene transcription) and is, when dysregulated, known to be associated with numerous human diseases, including cancer, rheumatoid arthritis, and multiple sclerosis. This modification, also termed deimination, is catalyzed by a group of enzymes called the protein arginine deiminases (PADs). In mammals, there are five PAD family members (i.e., PADs 1, 2, 3, 4, and 6) that exhibit tissue-specific expression patterns and vary in their subcellular localization. The kinetic characterization of PAD4 was recently reported, and these efforts guided the development of the two most potent PAD4 inhibitors (i.e., F- and Cl-amidine) known to date. In addition to being potent PAD4 inhibitors, we show here that Cl-amidine also exhibits a strong inhibitory effect against PADs 1 and 3, thus indicating its utility as a pan PAD inhibitor. Given the increasing number of diseases in which dysregulated PAD activity has been implicated, the development of PAD-selective inhibitors is of paramount importance. To aid that goal, we characterized the catalytic mechanism and substrate specificity of PADs 1 and 3. Herein, we report the results of these studies, which suggest that, like PAD4, PADs 1 and 3 employ a reverse protonation mechanism. Additionally, the substrate specificity studies provided critical information that aided the identification of PAD3-selective inhibitors. These compounds, denoted F4- and Cl4-amidine, are the most potent PAD3 inhibitors ever described.


Assuntos
Inibidores Enzimáticos/farmacologia , Hidrolases/antagonistas & inibidores , Hidrolases/metabolismo , Sequência de Aminoácidos , Amônia/metabolismo , Cálcio/fisiologia , Catálise , Citrulina/biossíntese , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Cinética , Dados de Sequência Molecular , Proteína-Arginina Desiminase do Tipo 1 , Proteína-Arginina Desiminase do Tipo 3 , Proteína-Arginina Desiminase do Tipo 4 , Desiminases de Arginina em Proteínas , Especificidade por Substrato
2.
Biochemistry ; 47(39): 10420-7, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18771293

RESUMO

Protein arginine methyltransferases (PRMTs) are SAM-dependent enzymes that catalyze the mono- and dimethylation of peptidyl arginine residues. Although all PRMTs produce monomethyl arginine (MMA), type 1 PRMTs go on to form asymmetrically dimethylated arginine (ADMA), while type 2 enzymes form symmetrically dimethylated arginine (SDMA). PRMT1 is the major type 1 PRMT in vivo, thus it is the primary producer of the competitive NOS inhibitor, ADMA. Hence, potent inhibitors, which are highly selective for this particular isozyme, could serve as excellent therapeutics for heart disease. However, the design of such inhibitors is impeded by a lack of information regarding this enzyme's kinetic and catalytic mechanisms. Herein we report an analysis of the kinetic mechanism of human PRMT1 using both an unmethylated and a monomethylated substrate peptide based on the N-terminus of histone H4. The results of initial velocity and product and dead-end inhibition experiments indicate that PRMT1 utilizes a rapid equilibrium random mechanism with the formation of dead-end EAP and EBQ complexes. This mechanism is gratifyingly consistent with previous results demonstrating that PRMT1 catalyzes substrate dimethylation in a partially processive manner.


Assuntos
Proteína-Arginina N-Metiltransferases/metabolismo , Catálise , Cardiopatias/enzimologia , Humanos , Isoenzimas/metabolismo , Cinética , Metilação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/isolamento & purificação
4.
Biochemistry ; 46(46): 13370-81, 2007 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-17960915

RESUMO

Protein arginine methyltransferases (PRMTs) are a group of eukaryotic enzymes that catalyze the methylation of Arg residues in a variety of proteins (e.g., histones H3 and H4), and their activities influence a wide range of cellular processes, including cell growth, RNA splicing, differentiation, and transcriptional regulation. Dysregulation of these enzymes has been linked to heart disease and cancer, suggesting this enzyme family as a novel therapeutic target. To aid the development of PRMT inhibitors, we characterized the substrate specificity of both the rat and human PRMT1 orthologues using histone based peptide substrates. N- and C-terminal truncations to identify a minimal peptide substrate indicate that long-range interactions between enzyme and substrate are important for high rates of substrate capture. The importance of these long-range interactions to substrate capture were confirmed by "mutagenesis" experiments on a minimal peptide substrate. Inhibition studies on S-adenosyl-homocysteine, thioadenosine, methylthioadenosine, homocysteine, and sinefungin suggest that potent and selective bisubstrate analogue inhibitor(s) for PRMT1 can be developed by linking a histone based peptide substrate to homocysteine or sinefungin. Additionally, we present evidence that PRMT1 utilizes a partially processive mechanism to dimethylate its substrates.


Assuntos
Peptídeos/química , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Catálise , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Cinética , Espectrometria de Massas , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/metabolismo , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA