Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14919, 2024 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942904

RESUMO

Helminth infections lead to an overdispersion of the parasites in humans as well as in animals. We asked whether early immune responses against migrating Ascaris larvae are responsible for the unequal distribution of worms in natural host populations and thus investigated a susceptible versus a resistant mouse strain. In mice, the roundworm larvae develop until the lung stage and thus early anti-Ascaris immune responses against the migrating larvae in the liver and lung can be deciphered. Our data show that susceptible C57BL/6 mice respond to Ascaris larval migration significantly stronger compared to resistant CBA mice and the anti-parasite reactivity is associated with pathology. Increased eosinophil recruitment was detected in the liver and lungs, but also in the spleen and peritoneal cavity of susceptible mice on day 8 post infection compared to resistant mice. In serum, eosinophil peroxidase levels were significantly higher only in the susceptible mice, indicating functional activity of the recruited eosinophils. This effect was associated with an increased IL-5/IL-13 production by innate lymphoid cells and CD4+ T cells and a pronounced type 2 macrophage polarization in the lungs of susceptible mice. Furthermore, a comparison of wildtype BALB/c and eosinophil-deficient dblGATA-1 BALB/c mice showed that eosinophils were not essential for the early control of migrating Ascaris larvae. In conclusion, in primary infection, a strong local and systemic type 2 immune response during hepato-tracheal helminth larval migration is associated with pathology rather than protection.


Assuntos
Ascaríase , Larva , Pulmão , Camundongos Endogâmicos BALB C , Células Th2 , Animais , Ascaríase/imunologia , Ascaríase/parasitologia , Larva/imunologia , Camundongos , Células Th2/imunologia , Pulmão/parasitologia , Pulmão/imunologia , Pulmão/patologia , Ascaris/imunologia , Eosinófilos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Fígado/parasitologia , Fígado/imunologia , Fígado/patologia , Feminino
2.
Sci Rep ; 14(1): 14586, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918457

RESUMO

Natural killer (NK) cells play a key role in defense against Salmonella infections during the early phase of infection. Our previous work showed that the excretory/secretory products of Ascaris suum repressed NK activity in vitro. Here, we asked if NK cell functionality was influenced in domestic pigs during coinfection with Ascaris and Salmonella enterica serotype Typhimurium. Ascaris coinfection completely abolished the IL-12 and IL-18 driven elevation of IFN-γ production seen in CD16 + CD8α + perforin + NK cells of Salmonella single-infected pigs. Furthermore, Ascaris coinfection prohibited the Salmonella-driven rise in NK perforin levels and CD107a surface expression. In line with impaired effector functions, NK cells from Ascaris-single and coinfected pigs displayed elevated expression of the inhibitory KLRA1 and NKG2A receptors genes, contrasting with the higher expression of the activating NKp46 and NKp30 receptors in NK cells during Salmonella single infection. These differences were accompanied by the highly significant upregulation of T-bet protein expression in NK cells from Ascaris-single and Ascaris/Salmonella coinfected pigs. Together, our data strongly indicate a profound repression of NK functionality by an Ascaris infection which may hinder infected individuals from adequately responding to a concurrent bacterial infection.


Assuntos
Ascaríase , Coinfecção , Células Matadoras Naturais , Doenças dos Suínos , Animais , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Ascaríase/imunologia , Ascaríase/veterinária , Ascaríase/parasitologia , Coinfecção/imunologia , Coinfecção/microbiologia , Coinfecção/parasitologia , Suínos , Doenças dos Suínos/parasitologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia , Salmonelose Animal/imunologia , Salmonella typhimurium/imunologia , Salmonella typhimurium/patogenicidade , Ascaris suum/imunologia , Interferon gama/metabolismo , Perforina/metabolismo , Interleucina-12/metabolismo , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Interleucina-18/metabolismo
3.
Front Immunol ; 15: 1396446, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799456

RESUMO

Ascaris spp. undergo extensive migration within the body before establishing patent infections in the small intestinal tract of humans and pigs. However, whether larval migration is critical for inducing efficient type 2 responses remains poorly understood. Therefore, we investigated systemic versus local adaptive immune responses along the hepato-tracheal migration of Ascaris suum during primary, single infections in conventionally raised pigs. Neither the initial invasion of gut tissue nor migration through the liver resulted in discernable Th2 cell responses. In contrast, lung-stage larvae elicited a Th2-biased pulmonary response, which declined after the larvae had left the lungs. In the small intestine, we observed an accumulation of Th2 cells upon the arrival of fourth-stage larvae (L4) to the small intestinal lumen. In parallel, we noticed robust and increasing Th1 responses in circulation, migration-affected organs, and draining lymph nodes. Phenotypic analysis of CD4+ T cells specifically recognizing A. suum antigens in the circulation and lung tissue of infected pigs confirmed that the majority of Ascaris-specific T cells produced IL-4 (Th2) and, to a much lesser extent, IL-4/IFN-g (Th2/1 hybrids) or IFN-g alone (Th1). These data demonstrate that lung-stage but not the early liver-stage larvae lead to a locally restricted Th2 response. Significant Th2 cell accumulation in the small intestine occurs only when L4 complete the body migration. In addition, Th2 immunity seems to be hampered by the concurrent, nonspecific Th1 bias in growing pigs. Together, the late onset of Th2 immunity at the site of infection and the Th1-biased systemic immunity likely enable the establishment of intestinal infections by sufficiently large L4 stages and pre-adult worms, some of which resist expulsion mechanisms.


Assuntos
Ascaríase , Ascaris suum , Células Th1 , Células Th2 , Animais , Ascaris suum/imunologia , Ascaríase/imunologia , Ascaríase/parasitologia , Células Th2/imunologia , Suínos , Células Th1/imunologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/parasitologia , Pulmão/imunologia , Pulmão/parasitologia , Larva/imunologia , Citocinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA