Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37176930

RESUMO

There is an urgent demand for biostimulant amendments that can sustainably alleviate osmotic stress. However, limited information is available about the integrated application of vermicompost and a cyanobacteria extract on cotton plants. In 2020 and 2021, two field experiments were carried out in which twelve combinations of three irrigation intervals were employed every 14 days (Irrig.14), 21 days (Irrig.21), and 28 days (Irrig.28) along with four amendment treatments (a control, vermicompost, cyanobacteria extract, and combination of vermicompost + cyanobacteria extract) in salt-affected soil. The integrative use of vermicompost and a cyanobacteria extract resulted in an observed improvement in the physicochemical attributes; non-enzymatic antioxidants (free amino acids, proline, total soluble sugars, and phenolics); and antioxidant enzyme activities of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) and a decrease in the levels of oxidative damage indicators (H2O2 and MDA). Significant augmentation in the content of chlorophyll a and b, carotenoid concentration, relative water content, stomatal conductance, and K+ was also observed. In conjunction with these findings, noticeable decreases in the content of Na+ and hydrogen peroxide (H2O2) and the degree of lipid peroxidation (MDA) proved the efficacy of this technique. Consequently, the highest cotton yield and productivity as well as fiber quality were achieved when vermicompost and a cyanobacteria extract were used together under increasing irrigation intervals in salt-affected soil. In conclusion, the integrated application of vermicompost and a cyanobacteria extract can be helpful for obtaining higher cotton productivity and fiber quality compared with the studied control and the individual applications of the vermicompost or the cyanobacteria extract under increasing irrigation intervals within salt-affected soil. Additionally, it can also help alleviate the harmful impact of these abiotic stresses.

2.
Plants (Basel) ; 11(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36559542

RESUMO

The growth and development of rice face many issues, including its exposure to high soil salinity. This issue can be alleviated using new approaches to overwhelm the factors that restrict rice productivity. The objective of our investigation was the usage of the rhizobacteria (Pseudomonas koreensis and Bacillus coagulans) as plant growth-promoting rhizobacteria (PGPRs) and nano-silicon, which could be a positive technology to cope with the problems raised by soil salinity in addition to improvement the morpho-physiological properties, and productivity of two rice varieties (i.e., Giza 177 as salt-sensitive and Giza 179 as salt-tolerant). The findings stated that the application of combined PGPRs and nano-Si resulted in the highest soil enzymes activity (dehydrogenase and urease), root length, leaf area index, photosynthesis pigments, K+ ions, relative water content (RWC), and stomatal conductance (gs) while resulted in the reduction of Na+, electrolyte leakage (EL), and proline content. All these improvements are due to increased antioxidant enzymes activity such as catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), which decreased hydrogen peroxide (H2O2) and malondialdehyde (MDA) under soil salinity in rice plants compared to the other treatments. Combined application of PGPRs and nano-Si to Giza 177 significantly surpassed Giza 179, which was neither treated with PGPR nor nano-Si in the main yield components (number of grains/panicles, 1000 grain weight, and grain yield as well as nutrient uptake. In conclusion, both PGPRs and nano-Si had stimulating effects that mitigated the salinity-deleterious effects and encouraged plant growth, and, therefore, enhanced the grain yield.

3.
Plants (Basel) ; 11(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35406858

RESUMO

Plant growth and crop productivity under unfavorable environmental challenges require a unique strategy to scavenge the severely negative impacts of these challenges such as soil salinity and water stress. Compost and plant growth-promoting rhizobacteria (PGPR) have many beneficial impacts, particularly in plants exposed to different types of stress. Therefore, a field experiment during two successive seasons was conducted to investigate the impact of compost and PGPR either separately or in a combination on exchangeable sodium percentage (ESP), soil enzymes (urease and dehydrogenase), wheat physiology, antioxidant defense system, growth, and productivity under deficient irrigation and soil salinity conditions. Our findings showed that exposure of wheat plants to deficit irrigation in salt-affected soil inhibited wheat growth and development, and eventually reduced crop productivity. However, these injurious impacts were diminished after soil amendment using the combined application of compost and PGPR. This combined application enhanced soil urease and dehydrogenase, ion selectivity, chlorophylls, carotenoids, stomatal conductance, and the relative water content (RWC) whilst reducing ESP, proline content, which eventually increased the yield-related traits of wheat plants under deficient irrigation conditions. Moreover, the coupled application of compost and PGPR reduced the uptake of Na and resulted in an increment in superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX) activities that lessened oxidative damage and improved the nutrient uptake (N, P, and K) of deficiently irrigated wheat plants under soil salinity. It was concluded that to protect wheat plants from environmental stressors, such as water stress and soil salinity, co-application of compost with PGPR was found to be effective.

4.
Front Plant Sci ; 13: 961872, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176673

RESUMO

Due to global climate change, abiotic stresses are affecting plant growth, productivity, and the quality of cultivated crops. Stressful conditions disrupt physiological activities and suppress defensive mechanisms, resulting in stress-sensitive plants. Consequently, plants implement various endogenous strategies, including plant hormone biosynthesis (e.g., abscisic acid, jasmonic acid, salicylic acid, brassinosteroids, indole-3-acetic acid, cytokinins, ethylene, gibberellic acid, and strigolactones) to withstand stress conditions. Combined or single abiotic stress disrupts the normal transportation of solutes, causes electron leakage, and triggers reactive oxygen species (ROS) production, creating oxidative stress in plants. Several enzymatic and non-enzymatic defense systems marshal a plant's antioxidant defenses. While stress responses and the protective role of the antioxidant defense system have been well-documented in recent investigations, the interrelationships among plant hormones, plant neurotransmitters (NTs, such as serotonin, melatonin, dopamine, acetylcholine, and γ-aminobutyric acid), and antioxidant defenses are not well explained. Thus, this review discusses recent advances in plant hormones, transgenic and metabolic developments, and the potential interaction of plant hormones with NTs in plant stress response and tolerance mechanisms. Furthermore, we discuss current challenges and future directions (transgenic breeding and genome editing) for metabolic improvement in plants using modern molecular tools. The interaction of plant hormones and NTs involved in regulating antioxidant defense systems, molecular hormone networks, and abiotic-induced oxidative stress tolerance in plants are also discussed.

5.
Plants (Basel) ; 10(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34961069

RESUMO

Water scarcity, due to physical shortage or inadequate access, is a major global challenge that severely affects agricultural productivity and sustainability. Deficit irrigation is a promising strategy to overcome water scarcity, particularly in arid and semiarid regions with limited freshwater resources. However, precise application of deficit irrigation requires a better understanding of the plant response to water/drought stress. In the current study, we investigated the potential impacts of biochar-based soil amendment and foliar potassium-humate application (separately or their combination) on the growth, productivity, and nutritional value of onion (Allium cepa L.) under deficient irrigation conditions in two separate field trials during the 2018/2019 and 2019/2020 seasons. Our findings showed that deficit irrigation negatively affected onion resilience to drought stress. However, these harmful effects were diminished after soil amendment using biochar, K-humate foliar application, or their combination. Briefly, integrated biochar and K-humate application increased onion growth, boosted the content of the photosynthetic pigments, enhanced the water relations, and increased the yield traits of deficient irrigation onion plants. Moreover, it improved the biochemical response, enhanced the activities of antioxidant enzymes, and enriched the nutrient value of deficiently irrigated onion plants. Collectively, these findings highlight the potential utilization of biochar and K-humate as sustainable eco-friendly strategies to improve onion resilience to deficit irrigation.

6.
Plants (Basel) ; 10(7)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34371599

RESUMO

Water stress or soil salinity is considered the major environmental factor affecting plant growth. When both challenges are present, the soil becomes infertile, limiting plant productivity. In this work a field experiment was conducted during the summer 2019 and 2020 seasons to evaluate whether plant growth-promoting microbes (PGPMs) and nanoparticles (Si-ZnNPs) have the potential to maintain soybean growth, productivity, and seed quality under different watering intervals (every 11 (IW0), 15 (IW1) and 19 (IW2) days) in salt-affected soil. The most extended watering intervals (IW1 and IW2) caused significant increases in Na+ content, and oxidative damage indicators (malondialdehyde (MDA) and electrolyte leakage (EL%)), which led to significant reductions in soybean relative water content (RWC), stomatal conductance, leaf K+, photosynthetic pigments, soluble protein. Subsequently reduced the vegetative growth (root length, nodules dry weight, and total leaves area) and seeds yield. However, there was an enhancement in the antioxidants defense system (enzymatic and non-enzymatic antioxidant). The individual application of PGPMs or Si-ZnNPs significantly improved leaf K+ content, photosynthetic pigments, RWC, stomatal conductance, total soluble sugars (TSS), CAT, POD, SOD, number of pods plant-1, and seed yield through decreasing the leaf Na+ content, MDA, and EL%. The combined application of PGPMs and Si-ZnNPs minimized the adverse impact of water stress and soil salinity by maximizing the root length, heavier nodules dry weight, leaves area, TSS and the activity of antioxidant enzymes, which resulted in higher soybean growth and productivity, which suggests their use under harsh growing conditions.

7.
Plants (Basel) ; 10(5)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925247

RESUMO

The continuity of traditional planting systems in the last few decades has encountered its most significant challenge in the harsh changes in the global climate, leading to frustration in the plant growth and productivity, especially in the arid and semi-arid regions cultivated with moderate or sensitive crops to abiotic stresses. Faba bean, like most legume crops, is considered a moderately sensitive crop to saline soil and/or saline water. In this connection, a field experiment was conducted during the successive winter seasons 2018/2019 and 2019/2020 in a salt-affected soil to explore the combined effects of plant growth-promoting rhizobacteria (PGPR) and potassium (K) silicate on maintaining the soil quality, performance, and productivity of faba bean plants irrigated with either fresh water or saline water. Our findings indicated that the coupled use of PGPR and K silicate under the saline water irrigation treatment had the capability to reduce the levels of exchangeable sodium percentage (ESP) in the soil and to promote the activity of some soil enzymes (urease and dehydrogenase), which recorded nearly non-significant differences compared with fresh water (control) treatment, leading to reinstating the soil quality. Consequently, under salinity stress, the combined application motivated the faba bean vegetative growth, e.g., root length and nodulation, which reinstated the K+/Na+ ions homeostasis, leading to the lessening or equalizing of the activity level of enzymatic antioxidants (CAT, POD, and SOD) compared with the controls of both saline water and fresh water treatments, respectively. Although the irrigation with saline water significantly increased the osmolytes concentration (free amino acids and proline) in faba bean plants compared with fresh water treatment, application of PGPR or K-silicate notably reduced the osmolyte levels below the control treatment, either under stress or non-stress conditions. On the contrary, the concentrations of soluble assimilates (total soluble proteins and total soluble sugars) recorded pronounced increases under tested treatments, which enriched the plant growth, the nutrients (N, P, and K) uptake and translocation to the sink organs, which lastly improved the yield attributes (number of pods plant-1, number of seeds pod-1, 100-seed weight). It was concluded that the combined application of PGPR and K-silicate is considered a profitable strategy that is able to alleviate the harmful impact of salt stress alongside increasing plant growth and productivity.

8.
Plants (Basel) ; 9(10)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053807

RESUMO

Given the expectancy of the water supply becoming scarce in the future and more expensive, water conservation during wheat production processes has become very crucial especially in saline sodic soil. Biochar and salicylic acid (SA) were used to assess the potential to alleviate the influences of depletion of available soil moisture (DAM) on physicochemical, physiological, biochemical attributes, as well as wheat production absorption (Triticum aestivum L. cv. Misr 1) and macro-elements. Two seasons (2018/2019 and 2019/2020) of field trials were investigated using twelve combinations of three water treatments (50%, 70%, and 90% DAM) and foliar- and soil-applied treatments (control, biochar, salicylic acid, and biochar + SA). Biochar treated plots amplified soil physicochemical attributes, leading to improved physiological traits and antioxidant enzymes, as well as yield related traits under water limitation conditions in both years. Similarly, synergistic use of biochar and salicylic acid greatly augmented the designed characteristics such as chlorophyll a, b, K+ content, relative water content (RWC), stomatal conductance, photosynthetic rate, and intrinsic water use efficiency, whilst exhibited inhibitory effects on proline content, electrolyte leakage, Na+ content SOD, POX, CAT, and MDA, consequently increased 1000-grain weight, number of grains spike-1, grain yield, as well nutrient uptake (N, P, K) under water limitation condition in both years, followed by treatment of sole biochar or SA compared to unamended plots treatment (control). Wheat productivity achieved further increasing at 70% DAM alongside synergistic use of biochar and SA which was on par with 50% DAM under unamended plots (control). It is concluded from the findings that coupled application of biochar alongside salicylic acid accomplished an efficient approach to mitigate the injurious influences of water limitation, along with further improvement of the soil, physiology, biochemical attributes, and wheat yield, as well nutrient uptake, under saline sodic soil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA