Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Drug Dev Ind Pharm ; 50(4): 376-386, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533688

RESUMO

OBJECTIVE: The study evaluated physicochemical properties of eight different polymeric nanoparticles (NPs) and their interaction with lung barrier and their suitability for pulmonary drug delivery. METHODS: Eight physiochemically different NPs were fabricated from Poly lactic-co-glycolic acid (PLGA, PL) and Poly glycerol adipate-co-ω-pentadecalactone (PGA-co-PDL, PG) via emulsification-solvent evaporation. Pulmonary barrier integrity was investigated in vitro using Calu-3 under air-liquid interface. NPs internalization was investigated using a group of pharmacological inhibitors with subsequent microscopic visual confirmation. RESULTS: Eight NPs were successfully formulated from two polymers using emulsion-solvent evaporation; 200, 500 and 800 nm, negatively-charged and positively-charged. All different NPs did not alter tight junctions and PG NPs showed similar behavior to PL NPs, indicating its suitability for pulmonary drug delivery. Active endocytosis uptake mechanisms with physicochemical dependent manner were observed. In addition, NPs internalization and co-localization with lysosomes were visually confirmed indicating their vesicular transport. CONCLUSION: PG and PL NPs had shown no or low harmful effects on the barrier integrity, and with effective internalization and vesicular transport, thus, prospectively can be designed for pulmonary delivery applications.


Assuntos
Nanopartículas , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Poliglicólico/química , Ácido Láctico/química , Pulmão , Linhagem Celular , Nanopartículas/química , Solventes , Portadores de Fármacos/química
2.
Phytother Res ; 29(6): 944-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25779384

RESUMO

Glycyrrhiza glabra L. (Fabaceae), commonly known as 'liquorice', is a well-known medicinal plant. Roots of this plant have long been used as a sweetening and flavouring agent in food and pharmaceutical products, and also as a traditional remedy for cough, upper and lower respiratory ailments, kidney stones, hepatitis C, skin disorder, cardiovascular diseases, diabetes, gastrointestinal ulcers and stomach ache. Previous pharmacological and clinical studies have revealed its antitussive, antiinflammatory, antiviral, antimicrobial, antioxidant, immunomodulatory, hepatoprotective and cardioprotective properties. While glycyrrhizin, a sweet-tasting triterpene saponin, is the principal bioactive compound, several bioactive flavonoids and isoflavonoids are also present in the roots of this plant. In the present study, the cytotoxicity of the methanol extracts of nine samples of the roots of G. glabra, collected from various geographical origins, was assessed against immortal human keratinocyte (HaCaT), lung adenocarcinoma (A549) and liver carcinoma (HepG2) cell lines using the in vitro 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide cell toxicity/viability assay. Considerable variations in levels of cytotoxicity were observed among various samples of G. glabra.


Assuntos
Flavonoides/farmacologia , Glycyrrhiza/química , Queratinócitos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Saponinas/farmacologia , Triterpenos/farmacologia , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral/efeitos dos fármacos , Flavonoides/química , Geografia , Humanos , Concentração Inibidora 50 , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/patologia , Estrutura Molecular , Extratos Vegetais/química , Raízes de Plantas/química , Saponinas/química , Triterpenos/química
3.
Nanotoxicology ; 14(1): 21-58, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31502904

RESUMO

Nanoparticle(NP)-based materials have breakthrough applications in many fields of life, such as in engineering, communications and textiles industries; food and bioenvironmental applications; medicines and cosmetics, etc. Biomedical applications of NPs are very active areas of research with successful translation to pharmaceutical and clinical uses overcoming both pharmaceutical and clinical challenges. Although the attractiveness and enhanced applications of these NPs stem from their exceptional properties at the nanoscale size, i.e. 1-1000 nm, they exhibit completely different physicochemical profiles and, subsequently, toxicological profiles from their parent bulk materials. Hence, the clinical evaluation and toxicological assessment of NPs interactions within biological systems are continuously evolving to ensure their safety at the nanoscale. The pulmonary system is one of the primary routes of exposure to airborne NPs either intentionally, via aerosolized nanomedicines targeting pulmonary pathologies such as cancer or asthma, or unintentionally, via natural NPs and anthropogenic (man-made) NPs. This review presents the state-of-the-art, contemporary challenges, and knowledge gaps in the toxicological assessment of NPs interactions with the pulmonary system. It highlights the main mechanisms of NP toxicity, factors influencing their toxicity, the different toxicological assessment methods and their drawbacks, and the recent NP regulatory guidelines based on literature collected from the research pool of NPs interactions with lung cell lines, in vivo inhalation studies, and clinical trials.


Assuntos
Poluentes Atmosféricos/toxicidade , Nanopartículas/toxicidade , Sistema Respiratório/efeitos dos fármacos , Aerossóis , Animais , Humanos , Exposição por Inalação , Pulmão/efeitos dos fármacos , Nanomedicina
4.
Expert Opin Drug Deliv ; 15(8): 821-834, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30021074

RESUMO

INTRODUCTION: Macromolecules with unique effects and potency are increasingly being considered for application in lung pathologies. Numerous delivery strategies for these macromolecules through the lung have been investigated to improve the targeting and overall efficacy. AREAS COVERED: Targeting approaches from delivery devices, formulation strategies and specific targets are discussed. EXPERT OPINION: Although macromolecules are a heterogeneous group of molecules, a number of strategies have been investigated at the macro, micro, and nanoscopic scale for the delivery of macromolecules to specific sites and cells of lung tissues. Targeted approaches are already in use at the macroscopic scale through inhalation devices and formulations, but targeting strategies at the micro and nanoscopic scale are still in the laboratory stage. The combination of controlling lung deposition and targeting after deposition, through a combination of targeting strategies could be the future direction for the treatment of lung pathologies through the pulmonary route.


Assuntos
Portadores de Fármacos , Pneumopatias/tratamento farmacológico , Substâncias Macromoleculares/administração & dosagem , Nebulizadores e Vaporizadores , Administração por Inalação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA