Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Malar J ; 23(1): 20, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225627

RESUMO

BACKGROUND: Malaria remains a major public health problem in sub-Saharan Africa, particularly in Benin. The present study aims to evaluate the different Plasmodium species transmitted by malaria vectors in the communes of Cove, Zagnanado and Ouinhi, Southern Benin. METHODS: The study was conducted between December 2021 and October 2022 in 60 villages spread over the three study communes. Adult mosquitoes were collected from four houses in each village using human landing catches (HLCs). After morphological identification, a subsample of Anopheles gambiae, Anopheles funestus and Anopheles nili was analysed by PCR to test for their infection to the different Plasmodium species. RESULTS: Anopheles gambiae was collected at higher frequency in all the three study communes, representing 93.5% (95% CI 92.9-94) of all collected mosquitoes (n = 10,465). In total, five molecular species were found, An. gambiae sensu stricto (s.s.) and Anopheles coluzzii of the Gambiae complex, An. funestus and Anopheles leesoni of the Funestus group, and An. nili s.s., the sole species of the Nili group. From the five molecular species, four (An. gambiae s.s., An. coluzzii, An. funestus s.s. and An. nili s.s.) were found to be infected. Plasmodium falciparum was the main Plasmodium species in the study area, followed by Plasmodium vivax and Plasmodium ovale. Only An. gambiae s.s. was infected with all three Plasmodium species, while An. coluzzii was infected with two species, P. falciparum and P. vivax. CONCLUSIONS: Plasmodium falciparum was the only species tested for in malaria vectors in Benin, and remains the only one against which most control tools are directed. It is, therefore, necessary that particular attention be paid to secondary Plasmodium species for an efficient control of the disease. The presence of P. vivax emphasizes the need for an update of case management for malaria.


Assuntos
Anopheles , Malária Falciparum , Malária Vivax , Malária , Plasmodium , Animais , Adulto , Humanos , Benin , Plasmodium vivax , Mosquitos Vetores , África Ocidental , Plasmodium falciparum
2.
Malar J ; 23(1): 119, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664703

RESUMO

BACKGROUND: The residual activity of a clothianidin + deltamethrin mixture and clothianidin alone in IRS covered more than the period of malaria transmission in northern Benin. The aim of this study was to show whether the prolonged residual efficacy of clothianidin-based products resulted in a greater reduction in vector populations and subsequent malaria transmission compared with the shorter residual efficacy of pirimiphos-methyl. METHODS: Human bait mosquito collections by local volunteers and pyrethrum spray collections were used in 6 communes under IRS monitoring and evaluation from 2019 to 2021. ELISA/CSP and species PCR tests were performed on Anopheles gambiae sensu lato (s.l.) to determine the infectivity rate and subspecies by commune and year. The decrease in biting rate, entomological inoculation rate, incidence, inhibition of blood feeding, resting density of An. gambiae s.l. were studied and compared between insecticides per commune. RESULTS: The An. gambiae complex was the major vector throughout the study area, acounting for 98.71% (19,660/19,917) of all Anopheles mosquitoes collected. Anopheles gambiae s.l. collected was lower inside treated houses (45.19%: 4,630/10,245) than outside (54.73%: 5,607/10,245) after IRS (p < 0.001). A significant decrease (p < 0.001) in the biting rate was observed after IRS in all departments except Donga in 2021 after IRS with clothianidin 50 WG. The impact of insecticides on EIR reduction was most noticeable with pirimiphos-methyl 300 CS, followed by the clothianidin + deltamethrin mixture and finally clothianidin 50 WG. A reduction in new cases of malaria was observed in 2020, the year of mass distribution of LLINs and IRS, as well as individual and collective protection measures linked to COVID-19. Anopheles gambiae s.l. blood-feeding rates and parous were high and similar for all insecticides in treated houses. CONCLUSION: To achieve the goal of zero malaria, the optimal choice of vector control tools plays an important role. Compared with pirimiphos-methyl, clothianidin-based insecticides induced a lower reductions in entomological indicators of malaria transmission.


Assuntos
Anopheles , Guanidinas , Inseticidas , Malária , Controle de Mosquitos , Mosquitos Vetores , Neonicotinoides , Compostos Organotiofosforados , Piretrinas , Tiazóis , Animais , Anopheles/efeitos dos fármacos , Inseticidas/farmacologia , Guanidinas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Neonicotinoides/farmacologia , Tiazóis/farmacologia , Controle de Mosquitos/métodos , Compostos Organotiofosforados/farmacologia , Malária/prevenção & controle , Malária/transmissão , Benin , Nitrilas/farmacologia , Humanos
3.
Malar J ; 23(1): 72, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468292

RESUMO

BACKGROUND: Recently, bacterial endosymbiont, including Wolbachia and Microsporidia were found to limit the infection of Anopheles mosquitoes with Plasmodium falciparum. This study aimed to investigate the natural presence of key transmission-blocking endosymbionts in Anopheles gambiae and Anopheles coluzzii in Southern Benin. METHODS: The present study was conducted in seven communes (Cotonou, Porto-Novo, Aguégués, Ifangni, Pobè Athiémé, and Grand-Popo) of Southern Benin. Anopheles were collected using indoor/outdoor Human Landing Catches (HLCs) and Pyrethrum Spray Catches (PSCs). Following morphological identification, PCR was used to identify An. gambiae sensu lato (s.l.) to species level and to screen for the presence of both Wolbachia and Microsporidia. Plasmodium falciparum sporozoite infection was also assessed using ELISA. RESULTS: Overall, species composition in An. gambiae s.l. was 53.7% An. coluzzii, while the remainder was An. gambiae sensu stricto (s.s.). Combined data of the two sampling techniques revealed a mean infection prevalence with Wolbachia of 5.1% (95% CI 0.90-18.6) and 1.3% (95% CI 0.07-7.8) in An. gambiae s.s. and An. coluzzii, respectively. The mean infection prevalence with Microsporidia was 41.0% (95% CI 25.9-57.8) for An. gambiae s.s. and 57.0% (95% CI 45.4-67.9) for An. coluzzii. Wolbachia was only observed in Ifangni, Pobè, and Cotonou, while Microsporidia was detected in all study communes. Aggregated data for HLCs and PSCs showed a sporozoite rate (SR) of 0.80% (95% CI 0.09-2.87) and 0.69% (95% CI 0.09-2.87) for An. gambiae and An. coluzzii, respectively, with a mean of 0.74% (95% CI 0.20-1.90). Of the four individual mosquitoes which harboured P. falciparum, none were also infected with Wolbachia and one contained Microsporidia. CONCLUSIONS: The present study is the first report of natural infections of field-collected An. gambiae s.l. populations from Benin with Wolbachia and Microsporidia. Sustained efforts should be made to widen the spectrum of bacteria identified in mosquitoes, with the potential to develop endosymbiont-based control tools; such interventions could be the game-changer in the control of malaria and arboviral disease transmission.


Assuntos
Anopheles , Malária Falciparum , Piretrinas , Wolbachia , Animais , Humanos , Benin/epidemiologia , Estudos Transversais , Mosquitos Vetores , Malária Falciparum/epidemiologia , Esporozoítos
4.
Insects ; 15(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38667425

RESUMO

Epidemics of arboviruses in general, and dengue fever in particular, are an increasing threat in areas where Aedes (Ae.) aegypti is present. The effectiveness of chemical control of Ae. aegypti is jeopardized by the increasing frequency of insecticide resistance. The aim of this study was to determine the susceptibility status of Ae. aegypti to public health insecticides and assess the underlying mechanisms driving insecticide resistance. Ae. aegypti eggs were collected in two study sites in the vicinity of houses for two weeks using gravid Aedes traps (GATs). After rearing the mosquitoes to adulthood, female Ae. aegypti were exposed to diagnostic doses of permethrin, deltamethrin and bendiocarb, using Centers for Disease Control and Prevention (CDC) bottle bioassays. Unexposed, un-engorged female Ae. aegypti were tested individually for mixed-function oxidase (MFO), glutathione-S-transferase (GST) and α and ß esterase activities. Finally, allele-specific PCR (AS-PCR) was used to detect possible kdr mutations (F1534C, S989P, and V1016G) in the voltage-gated sodium channel gene in insecticide-exposed Ae. aegypti. Most traps were oviposition positive; 93.2% and 97% of traps contained Ae. aegypti eggs in the 10ème arrondissement of Cotonou and in Godomey-Togoudo, respectively. Insecticide bioassays detected resistance to permethrin and deltamethrin in both study sites and complete susceptibility to bendiocarb. By comparison to the insecticide-susceptible Rockefeller strain, field Ae. aegypti populations had significantly higher levels of GSTs and significantly lower levels of α and ß esterases; there was no significant difference between levels of MFOs. AS-PCR genotyping revealed the possible presence of 3 kdr mutations (F1534C, S989P, and V1016G) at high frequencies; 80.9% (228/282) of the Ae. aegypti tested had at least 1 mutation, while the simultaneous presence of all 3 kdr mutations was identified in 13 resistant individuals. Study findings demonstrated phenotypic pyrethroid resistance, the over-expression of key detoxification enzymes, and the possible presence of several kdr mutations in Ae. aegypti populations, emphasizing the urgent need to implement vector control strategies targeting arbovirus vector species in Benin.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38686519

RESUMO

Background: This study conducted in the departments of Oueme and Plateau aims to assess the presence of the dengue virus and its different serotypes in Aedes aegypti and Aedes albopictus, as well as the epidemic risk incurred by the populations. Methods: Collections of adult mosquitoes using human landing catches (HLC) were carried out in six communes, three (Porto-Novo, Adjarra, and Avrankou) in the Oueme department and the rest (Ifangni, Kétou, and Pobè) in the Plateau department. Pools of ten Aedes mosquitoes were formed, and stored at -80°C in RNA later. RT-PCR was used to detect dengue virus, and conventional PCR for the different serotypes. Inspection of water containers and collection of Aedes larvae was performed inside and around each house to calculate the stegomyan indices. Results: In the six communes, the dengue virus was present both in Ae. aegypti and Ae. albopictus. Combined data of the two Aedes species at the communes level revealed infection rates ranging from 80.00% (95% CI: 61.43-92.29) to 96.67% (95% CI: 82.78-99.92). In all the communes, the values of stegomyan indices reached the WHO threshold, which indicates the existence of the risk of an arbovirus epidemic. In addition, the infection rates were similar for Ae. aegypti [88.19% (95% CI: 81.27-93.24)] and Ae. albopictus [86.79% (95% CI: 74.66-94.52)]. The three virus serotypes detected in the pools of Aedes were DENV-1, DENV-3, and DENV-4, with a high prevalence for the first two. Conclusion: This study revealed that three serotypes (DENV-1, DENV-3, and DENV-4) of dengue virus circulate in Ae. aegypti and Ae. albopictus in the departments of Oueme and Plateau. Moreover, the risk of transmission of arboviruses was globally high and variable from commune to commune. This information is essential for informed decision-making in the preventive control of the disease.

6.
Parasit Vectors ; 17(1): 115, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454494

RESUMO

BACKGROUND: Indoor residual spraying (IRS) was first implemented in the Atacora department, Benin from 2011 to 2012 using bendiocarb (carbamate) followed by annual spraying with pirimiphos-methyl (organophosphate) from 2013 to 2018. Before and after IRS implementation in Atacora, standard pyrethroid insecticide-treated bed nets were the main method of vector control in the area. This study investigated the knockdown resistance (kdr) gene (L1014F) and the acetylcholinesterase (ace-1) gene (G119S), before and during IRS implementation, and 4-years after IRS withdrawal from Atacora. This was done to assess how changes in insecticide pressure from indoor residual spraying may have altered the genotypic resistance profile of Anopheles gambiae s.l. METHOD: Identification of sibling species of An. gambiae s.l. and detection of the L1014F mutation in the kdr gene and G119S mutation in ace-1 genes was done using molecular analysis. Allelic and genotypic frequencies were calculated and compared with each other before and during IRS implementation and 4 years after IRS withdrawal. The Hardy-Weinberg equilibrium and genetic differentiation within and between populations were assessed. RESULTS: Prevalence of the L1014F mutation in all geographic An. gambiae s.l. (An. gambiae s.s., Anopheles. coluzzii, Anopheles. arabiensis, and hybrids of "An. gambiae s.s. and An. coluzzii") populations increased from 69% before IRS to 87% and 90% during and after IRS. The G119S allele frequency during IRS (20%) was significantly higher than before IRS implementation (2%). Four years after IRS withdrawal, allele frequencies returned to similar levels as before IRS (3%). Four years after IRS withdrawal, the populations showed excess heterozygosity at the ace-1 gene and deficit heterozygosity at the kdr gene, whereas both genes had excess heterozygosity before and during IRS (FIS < 0). No genetic differentiation was observed within the populations. CONCLUSIONS: This study shows that the withdrawal of IRS with bendiocarb and pirimiphos-methyl may have slowed down the selection of individual mosquitoes with ace-1 resistance alleles in contrast to populations of An. gambiae s.l. with the L1014F resistance allele of the kdr gene. This may suggest that withdrawing the use of carbamates or organophosphates from IRS or rotating alternative insecticides with different modes of action may slow the development of ace-1 insecticide-resistance mutations. The increase in the prevalence of the L1014F mutation of the kdr gene in the population, despite the cessation of IRS, could be explained by the growing use of pyrethroids and DDT in agriculture and for other domestic use. More observational studies in countries where carbamates or organophosphates are still being used as public health insecticides may provide additional insights into these associations.


Assuntos
Anopheles , Inseticidas , Fenilcarbamatos , Piretrinas , Animais , Inseticidas/farmacologia , Anopheles/genética , Benin , Alelos , Acetilcolinesterase/genética , Mosquitos Vetores/genética , Piretrinas/farmacologia , Resistência a Inseticidas/genética , Carbamatos/farmacologia , Organofosfatos/farmacologia , Controle de Mosquitos/métodos
7.
Trop Med Health ; 52(1): 34, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689360

RESUMO

BACKGROUND: This study investigates the effectiveness of new-generation mosquito nets, like Olyset® Plus and PermaNet® 3.0, and dual-action nets such as Interceptor® G2, against pyrethroid-resistant Anopheles gambiae mosquitoes following the 2023 mass distribution of long-lasting insecticidal nets in Benin. METHODS: We tested wild mosquito populations from six communes in Benin against various pyrethroid (permethrin 0.75%, alphacypermethrin 0.05%, and deltamethrin 0.05%) using WHO tube tests. Additionally, we exposed mosquitoes to chlorfenapyr 100 µg/ml using the CDC bottle bioassay method. A subset of mosquitoes underwent biochemical and PCR tests to check the overexpression of metabolic enzymes and the Kdr L1014F mutation. We evaluated the effectiveness of Olyset® Plus, PermaNet® 3.0, and Interceptor® G2 nets using cone and tunnel tests on both laboratory and field populations of An. gambiae. RESULTS: Overall, the highest mortality rate was 60% with pyrethroid and 98 to100% with chlorfenapyr. In cone tests, all three types of nets induced mortality rates above 80% in the susceptible laboratory strain of An. gambiae. Notably, Olyset® Plus showed the highest mortality rates for pyrethroid-resistant mosquitoes in cone tests, ranging from 81.03% (95% CI: 68.59-90.13) in Djougou to 96.08% (95% CI: 86.54-99.52) in Akpro-Missérété. PermaNet® 3.0 had variable rates, from 42.5% (95% CI: 27.04-59.11) in Djougou to 58.54% (95% CI: 42.11-73.68) in Porto-Novo. However, revealed good results for Interceptor® G2, with 94% (95% CI: 87.40-97.77) mortality and 89.09% blood sampling inhibition in local populations of An. gambiae. In comparison, Interceptor® had lower rates of 17% (95% CI: 10.23-25.82) and 60%, respectively. CONCLUSION: These results suggest that tunnel tests are effective for evaluating dual-active ingredient nets. Additionally, Interceptor® G2 and PBO nets like Olyset® Plus could be considered as alternatives against pyrethroid-resistant mosquitoes.

8.
Parasit Vectors ; 17(1): 303, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-38997729

RESUMO

BACKGROUND: Malaria transmission is known to be perennial and heterogeneous in Benin. Studies assessing local malaria prevalence, transmission levels and vector characteristics are critical for designing, monitoring and evaluating new vector control interventions in community trials. We conducted a study in the Zakpota sub-district of central Benin to collect baseline data on household characteristics, malaria prevalence, vector characteristics and transmission dynamics in preparation for a randomised controlled trial to evaluate the community impact of VECTRON™ T500, a new broflanilide indoor residual spraying (IRS) product. METHODS: A total of 480 children under 5 years of age from the 15 villages of the sub-district were tested for malaria by rapid diagnostic tests (RDTs). Mosquitoes were collected by human landing catches (HLCs), pyrethrum spray catches (PSCs) and Centers for Disease Control and Prevention miniature light traps (CDC-LTs) in selected houses in each village to assess vector density, composition, vector infectivity and prevalence of insecticide resistance markers. Bioassays were performed to detect vector susceptibility to pyrethroids, broflanilide (6 µg/bottle) and clothianidin (90 µg/bottle). RESULTS: A total of 9080 households were enumerated in the 15 study villages. Insecticide-treated net (ITN) usage was > 90%, with 1-2 ITNs owned per household. Houses were constructed mainly with cement (44%) and mud (38%) substrates or a mixture of cement and mud (18%), and 60% of them had open eaves. The overall prevalence of P. falciparum infection was 19% among surveyed children: 20% among females and 18% among males. The haemoglobin rate showed an anaemia (< 11 g/dl) prevalence of 66%. Anopheles coluzzii and An. gambiae sensu stricto (s.s.) were the two vector species present at an overall proportion of 46% versus 54%, respectively. The human biting rate was 2.3 bites per person per night (b/p/n) and biting occurred mostly indoors compared with outdoors (IRR = 0.776; P = 0.001). The overall proportion of outdoor biting was 44% and exceeded indoor biting in three villages. The sporozoite rate was 2% with a combined yearly entomological inoculation rate (EIR) of 16.1 infected bites per person per year (ib/p/y). There was great variability in malaria transmission risk across the villages, with EIR ranging from 0 to 29.3 ib/p/y. The vector population showed a high intensity of resistance to pyrethroids across the study villages but was largely susceptible to broflanilide and clothianidin. CONCLUSIONS: This study found high levels of malaria prevalence, vector density and transmission in the Zakpota sub-district despite the wide use of insecticide-treated nets. The vector population was mostly indoor resting and showed a high intensity of pyrethroid resistance but was generally fully susceptible to broflanilide. These findings demonstrated the suitability of the study area for the assessment of VECTRON™ T500 in a community randomised trial.


Assuntos
Anopheles , Inseticidas , Malária , Controle de Mosquitos , Mosquitos Vetores , Benin/epidemiologia , Humanos , Animais , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Prevalência , Pré-Escolar , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/parasitologia , Anopheles/efeitos dos fármacos , Anopheles/parasitologia , Anopheles/fisiologia , Feminino , Malária/transmissão , Malária/prevenção & controle , Malária/epidemiologia , Masculino , Lactente , Resistência a Inseticidas , Piretrinas/farmacologia
9.
Sci Rep ; 14(1): 16944, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043761

RESUMO

The present study aimed to assess mosquito species diversity, distribution, and ecological preferences in the Covè, Ouinhi, and Zangnanado communes, Southern Benin. Such information is critical to understand mosquito bio-ecology and to focus control efforts in high-risk areas for vector-borne diseases. Mosquito collections occurred quarterly in 60 clusters between June 2020 and April 2021, using human landing catches. In addition to the seasonal mosquito abundance, Shannon's diversity, Simpson, and Pielou's equitability indices were also evaluated to assess mosquito diversity. Ecological niche models were developed with MaxEnt using environmental variables to assess species distribution. Overall, mosquito density was higher in the wet season than in the dry season in all communes. A significantly higher Shannon's diversity index was also observed in the wet season than in the dry seasons in all communes (p < 0.05). Habitat suitability of An. gambiae s.s., An. coluzzii, Cx. quinquefasciatus and Ma. africana was highly influenced by slope, isothermality, site aspect, elevation, and precipitation seasonality in both wet and dry seasons. Overall, depending on the season, the ecological preferences of the four main mosquito species were variable across study communes. This emphasizes the impact of environmental conditions on mosquito species distribution. Moreover, mosquito populations were found to be more diverse in the wet season compared to the dry season.


Assuntos
Biodiversidade , Ecossistema , Malária , Mosquitos Vetores , Estações do Ano , Animais , Benin , Mosquitos Vetores/fisiologia , Malária/transmissão , Culicidae/classificação , Culicidae/fisiologia , Humanos , Anopheles/fisiologia , Anopheles/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA