Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 122(17): 3469-3475, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37501368

RESUMO

In the presence of polyvalent cations, long double-stranded DNA (dsDNA) in dilute solution undergoes a single-molecule, first-order, phase transition ("condensation"), a phenomenon that has been documented and analyzed by many years of experimental and theoretical studies. There has been no systematic effort, however, to determine whether long single-stranded RNA (ssRNA) shows an analogous behavior. In this study, using dynamic light scattering, analytical ultracentrifugation, and gel electrophoresis, we examine the effects of increasing polyvalent cation concentrations on the effective size of long ssRNAs ranging from 3000 to 12,000 nucleotides. Our results indicate that ssRNA does not undergo a discontinuous condensation as does dsDNA but rather a "continuous" decrease in size with increasing polyvalent cation concentration. And, instead of the 10-fold decrease in size shown by long dsDNA, we document a 50% decrease, as demonstrated for a range of lengths and sequences of ssRNA.


Assuntos
DNA , RNA , RNA/genética , Cátions
2.
Nat Chem Biol ; 15(11): 1093-1101, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31501589

RESUMO

Cytoplasmic dynein is an ATP-driven motor that transports intracellular cargos along microtubules. Dynein adopts an inactive conformation when not attached to a cargo, and motility is activated when dynein assembles with dynactin and a cargo adaptor. It was unclear how active dynein-dynactin complexes step along microtubules and transport cargos under tension. Using single-molecule imaging, we showed that dynein-dynactin advances by taking 8 to 32-nm steps toward the microtubule minus end with frequent sideways and backward steps. Multiple dyneins collectively bear a large amount of tension because the backward stepping rate of dynein is insensitive to load. Recruitment of two dyneins to dynactin increases the force generation and the likelihood of winning against kinesin in a tug-of-war but does not directly affect velocity. Instead, velocity is determined by cargo adaptors and tail-tail interactions between two closely packed dyneins. Our results show that cargo adaptors modulate dynein motility and force generation for a wide range of cellular functions.


Assuntos
Complexo Dinactina/metabolismo , Animais , Complexo Dinactina/química , Dineínas/química , Dineínas/metabolismo , Humanos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA