RESUMO
Previously, our group established a surgical gesture classification system that deconstructs robotic tissue dissection into basic surgical maneuvers. Here, we evaluate gestures by correlating the metric with surgeon experience and technical skill assessment scores in the apical dissection (AD) of robotic-assisted radical prostatectomy (RARP). Additionally, we explore the association between AD performance and early continence recovery following RARP. 78 AD surgical videos from 2016 to 2018 across two international institutions were included. Surgeons were grouped by median robotic caseload (range 80-5,800 cases): less experienced group (< 475 cases) and more experienced (≥ 475 cases). Videos were decoded with gestures and assessed using Dissection Assessment for Robotic Technique (DART). Statistical findings revealed more experienced surgeons (n = 10) used greater proportions of cold cut (p = 0.008) and smaller proportions of peel/push, spread, and two-hand spread (p < 0.05) than less experienced surgeons (n = 10). Correlations between gestures and technical skills assessments ranged from - 0.397 to 0.316 (p < 0.05). Surgeons utilizing more retraction gestures had lower total DART scores (p < 0.01), suggesting less dissection proficiency. Those who used more gestures and spent more time per gesture had lower efficiency scores (p < 0.01). More coagulation and hook gestures were found in cases of patients with continence recovery compared to those with ongoing incontinence (p < 0.04). Gestures performed during AD vary based on surgeon experience level and patient continence recovery duration. Significant correlations were demonstrated between gestures and dissection technical skills. Gestures can serve as a novel method to objectively evaluate dissection performance and anticipate outcomes.
Assuntos
Competência Clínica , Dissecação , Prostatectomia , Procedimentos Cirúrgicos Robóticos , Prostatectomia/métodos , Humanos , Procedimentos Cirúrgicos Robóticos/métodos , Masculino , Dissecação/métodos , Gestos , Neoplasias da Próstata/cirurgia , CirurgiõesRESUMO
How well a surgery is performed impacts a patient's outcomes; however, objective quantification of performance remains an unsolved challenge. Deconstructing a procedure into discrete instrument-tissue "gestures" is a emerging way to understand surgery. To establish this paradigm in a procedure where performance is the most important factor for patient outcomes, we identify 34,323 individual gestures performed in 80 nerve-sparing robot-assisted radical prostatectomies from two international medical centers. Gestures are classified into nine distinct dissection gestures (e.g., hot cut) and four supporting gestures (e.g., retraction). Our primary outcome is to identify factors impacting a patient's 1-year erectile function (EF) recovery after radical prostatectomy. We find that less use of hot cut and more use of peel/push are statistically associated with better chance of 1-year EF recovery. Our results also show interactions between surgeon experience and gesture types-similar gesture selection resulted in different EF recovery rates dependent on surgeon experience. To further validate this framework, two teams independently constructe distinct machine learning models using gesture sequences vs. traditional clinical features to predict 1-year EF. In both models, gesture sequences are able to better predict 1-year EF (Team 1: AUC 0.77, 95% CI 0.73-0.81; Team 2: AUC 0.68, 95% CI 0.66-0.70) than traditional clinical features (Team 1: AUC 0.69, 95% CI 0.65-0.73; Team 2: AUC 0.65, 95% CI 0.62-0.68). Our results suggest that gestures provide a granular method to objectively indicate surgical performance and outcomes. Application of this methodology to other surgeries may lead to discoveries on methods to improve surgery.