Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 30(7): 10443-10455, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35473011

RESUMO

Fiber specklegram sensors (FSSs) traditionally use statistical methods to analyze specklegrams obtained from fibers for sensing purposes, but can suffer from limitations such as vulnerability to noise and lack of dynamic range. In this paper we demonstrate that deep learning improves the analysis of specklegrams for sensing, which we show here for both air temperature and water immersion length measurements. Two deep neural networks (DNNs); a convolutional neural network and a multi-layer perceptron network, are used and compared to a traditional correlation technique on data obtained from a multimode fiber exposed-core fiber. The ability for the DNNs to be trained against a random noise source such as specklegram translations is also demonstrated.

2.
Opt Lett ; 46(7): 1636-1639, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33793505

RESUMO

We report, to the best of our knowledge, the first mode-locked fiber laser to operate in the femtosecond regime well beyond 3 µm. The laser uses dual-wavelength pumping and nonlinear polarization rotation to produce 3.5 µm wavelength pulses with minimum duration of 580 fs at a repetition rate of 68 MHz. The pulse energy is 3.2 nJ, corresponding to a peak power of 5.5 kW.

3.
J Opt Soc Am A Opt Image Sci Vis ; 38(11): 1603-1611, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34807020

RESUMO

Recent studies have shown convolutional neural networks (CNNs) can be trained to perform modal decomposition using intensity images of optical fields. A fundamental limitation of these techniques is that the modal phases cannot be uniquely calculated using a single intensity image. The knowledge of modal phases is crucial for wavefront sensing, alignment, and mode matching applications. Heterodyne imaging techniques can provide images of the transverse complex amplitude and phase profiles of laser beams at high resolutions and frame rates. In this work, we train a CNN to perform modal decomposition using simulated heterodyne images, allowing the complete modal phases to be predicted. This is, to our knowledge, the first machine learning decomposition scheme to utilize complex phase information to perform modal decomposition. We compare our network with a traditional overlap integral and center-of-mass centering algorithm and show that it is both less sensitive to beam centering and on average more accurate in our simulated images.

4.
Opt Express ; 28(10): 14405-14413, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403481

RESUMO

Knowledge of the intensity and phase profiles of spectral components in a coherent optical field is critical for a wide range of high-precision optical applications. One of these is interferometric gravitational wave detectors, which rely on the optical beats between these fields for precise control of the experiment. Here we describe an optical lock-in camera and show that it can be used to record optical beats at MHz or greater frequencies with higher spatial and temporal resolution than previously possible. This improvement is achieved using a Pockels cell as a fast optical switch to transform each pixel on a sCMOS array into an optical lock-in amplifier. We demonstrate that the optical lock-in camera can record fields with 2 Mpx resolution at 10 Hz with a sensitivity of -62 dBc when averaged over 2s.

5.
Opt Lett ; 43(11): 2724-2727, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29856377

RESUMO

We demonstrate the first actively Q-switched fiber laser operating in the 3.5 µm regime. The dual-wavelength pumped system makes use of an Er3+ doped ZBLAN fiber and a germanium acousto-optic modulator. Robust Q-switching saw a pulse energy of 7.8 µJ achieved at a repetition rate of 15 kHz, corresponding to a peak power of 14.5 W.

6.
Opt Express ; 24(7): 6869-83, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27136984

RESUMO

We report a new energy-transfer process in erbium doped ZBLAN glass, which is critical for optimizing the operation of lasers that use the 3.5 µm band 4F9/2 to 4I9/2 transition. The magnitude of this energy-transfer process is measured for two different doping levels in Er3+:ZBLAN and the requirement for low doping in these lasers established.

7.
Opt Express ; 24(14): 15341-50, 2016 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-27410810

RESUMO

We report the shortest duration pulses obtained to date from an actively Q-switched Er:YAG laser pumped by a low spectral and spatial brightness laser diode. The 14.5 ns, 6 mJ pulses were obtained using a 1470 nm laser diode end-pumped co-planar folded zigzag slab architecture. We also present an analytical model that accurately predicts the pulse energy-duration product achievable from virtually all Q-switched Er:YAG lasers and high repetition rate quasi-three-level Q-switched lasers in general.

8.
Opt Lett ; 41(7): 1676-9, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27192316

RESUMO

We report on a long wavelength emitting rare earth doped fiber laser with the emission centered at 3.5 µm and tunable across 450 nm. The longest wavelength emission was 3.78 µm which is the longest emission from a fiber laser operating at room temperature. In a simple optical arrangement employing dielectric mirrors for feedback, the laser was capable of emitting 1.45 W of near diffraction limited output power at 3.47 µm. These emission characteristics complement the emissions from quantum cascade lasers and demonstrate how all infrared dual wavelength pumping can be used to access high lying rare earth ion transitions that have previously relied on visible wavelength pumping.

9.
Opt Lett ; 39(3): 493-6, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24487848

RESUMO

We report the first, to the best of our knowledge, erbium-doped zirconium-fluoride-based glass fiber laser operating well beyond 3 µm with significant power. This fiber laser achieved 260 mW in CW at room temperature. The use of two different wavelength pump sources allows us to take advantage of the long-lived excited states that would normally cause a bottleneck, and this enables maximum incident optical-to-optical efficiency of 16% with respect to the total incident pump power. Both output power and efficiency are an order of magnitude improvement over similar lasers demonstrated previously. The fiber laser operating at 3.604 µm also exhibited the longest wavelength of operation obtained to date for a room temperature, nonsupercontinuum fiber laser.

10.
J Opt ; 26(1): 013001, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38116399

RESUMO

Optical sensors and sensing technologies are playing a more and more important role in our modern world. From micro-probes to large devices used in such diverse areas like medical diagnosis, defence, monitoring of industrial and environmental conditions, optics can be used in a variety of ways to achieve compact, low cost, stand-off sensing with extreme sensitivity and selectivity. Actually, the challenges to the design and functioning of an optical sensor for a particular application requires intimate knowledge of the optical, material, and environmental properties that can affect its performance. This roadmap on optical sensors addresses different technologies and application areas. It is constituted by twelve contributions authored by world-leading experts, providing insight into the current state-of-the-art and the challenges their respective fields face. Two articles address the area of optical fibre sensors, encompassing both conventional and specialty optical fibres. Several other articles are dedicated to laser-based sensors, micro- and nano-engineered sensors, whispering-gallery mode and plasmonic sensors. The use of optical sensors in chemical, biological and biomedical areas is discussed in some other papers. Different approaches required to satisfy applications at visible, infrared and THz spectral regions are also discussed.

11.
Nat Commun ; 14(1): 7343, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957145

RESUMO

The key challenge for high-power delivery through optical fibers is overcoming nonlinear optical effects. To keep a smooth output beam, most techniques for mitigating optical nonlinearities are restricted to single-mode fibers. Moving out of the single-mode paradigm, we show experimentally that wavefront-shaping of coherent input light to a highly multimode fiber can increase the power threshold for stimulated Brillouin scattering (SBS) by an order of magnitude, whilst simultaneously controlling the output beam profile. The SBS suppression results from an effective broadening of the Brillouin spectrum under multimode excitation, without broadening of transmitted light. Strongest suppression is achieved with selective mode excitation that gives the broadest Brillouin spectrum. Our method is efficient, robust, and applicable to continuous waves and pulses. This work points toward a promising route for mitigating detrimental nonlinear effects in optical fibers, enabling further power scaling of high-power fiber systems for applications to directed energy, remote sensing, and gravitational-wave detection.

12.
Opt Express ; 20(8): 8329-36, 2012 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-22513544

RESUMO

Second generation gravitational wave detectors are being installed in a number of locations globally. These long-baseline, Michelson interferometers increase the sensitivity between 10 and 40 Hz by many orders of magnitude compared with first generation instruments. Control of non-linear noise coupling from scattered light fields is critical to achieve low frequency performance. In this paper we investigate the requirements on the attenuation of scattered light using a novel time-domain analysis and two years of seismic data from the LIGO Livingston Observatory.

13.
Appl Opt ; 50(21): 4017-23, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21772386

RESUMO

Many wind-field mapping applications require range-resolved atmospheric velocity measurements at long range and/or with a temporal resolution sufficient to investigate turbulence. We argue that this capability can be achieved only by coherent laser radar systems that transmit energetic (>1 mJ) pulses. We describe such a system and describe single-pulse measurement of the range-resolved line-of-sight velocities, and show that the instrument-limited reproducibility of the measurements is 0.4 ms(-1).

14.
J Opt ; 19(8)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29375751

RESUMO

Sensors are devices or systems able to detect, measure and convert magnitudes from any domain to an electrical one. Using light as a probe for optical sensing is one of the most efficient approaches for this purpose. The history of optical sensing using some methods based on absorbance, emissive and florescence properties date back to the 16th century. The field of optical sensors evolved during the following centuries, but it did not achieve maturity until the demonstration of the first laser in 1960. The unique properties of laser light become particularly important in the case of laser-based sensors, whose operation is entirely based upon the direct detection of laser light itself, without relying on any additional mediating device. However, compared with freely propagating light beams, artificially engineered optical fields are in increasing demand for probing samples with very small sizes and/or weak light-matter interaction. Optical fiber sensors constitute a subarea of optical sensors in which fiber technologies are employed. Different types of specialty and photonic crystal fibers provide improved performance and novel sensing concepts. Actually, structurization with wavelength or subwavelength feature size appears as the most efficient way to enhance sensor sensitivity and its detection limit. This leads to the area of micro- and nano-engineered optical sensors. It is expected that the combination of better fabrication techniques and new physical effects may open new and fascinating opportunities in this area. This roadmap on optical sensors addresses different technologies and application areas of the field. Fourteen contributions authored by experts from both industry and academia provide insights into the current state-of-the-art and the challenges faced by researchers currently. Two sections of this paper provide an overview of laser-based and frequency comb-based sensors. Three sections address the area of optical fiber sensors, encompassing both conventional, specialty and photonic crystal fibers. Several other sections are dedicated to micro- and nano-engineered sensors, including whispering-gallery mode and plasmonic sensors. The uses of optical sensors in chemical, biological and biomedical areas are described in other sections. Different approaches required to satisfy applications at visible, infrared and THz spectral regions are also discussed. Advances in science and technology required to meet challenges faced in each of these areas are addressed, together with suggestions on how the field could evolve in the near future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA