Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 590(7846): 410-415, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33597760

RESUMO

Current X-ray imaging technologies involving flat-panel detectors have difficulty in imaging three-dimensional objects because fabrication of large-area, flexible, silicon-based photodetectors on highly curved surfaces remains a challenge1-3. Here we demonstrate ultralong-lived X-ray trapping for flat-panel-free, high-resolution, three-dimensional imaging using a series of solution-processable, lanthanide-doped nanoscintillators. Corroborated by quantum mechanical simulations of defect formation and electronic structures, our experimental characterizations reveal that slow hopping of trapped electrons due to radiation-triggered anionic migration in host lattices can induce more than 30 days of persistent radioluminescence. We further demonstrate X-ray luminescence extension imaging with resolution greater than 20 line pairs per millimetre and optical memory longer than 15 days. These findings provide insight into mechanisms underlying X-ray energy conversion through enduring electron trapping and offer a paradigm to motivate future research in wearable X-ray detectors for patient-centred radiography and mammography, imaging-guided therapeutics, high-energy physics and deep learning in radiology.

2.
Nature ; 561(7721): 88-93, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30150772

RESUMO

The rising demand for radiation detection materials in many applications has led to extensive research on scintillators1-3. The ability of a scintillator to absorb high-energy (kiloelectronvolt-scale) X-ray photons and convert the absorbed energy into low-energy visible photons is critical for applications in radiation exposure monitoring, security inspection, X-ray astronomy and medical radiography4,5. However, conventional scintillators are generally synthesized by crystallization at a high temperature and their radioluminescence is difficult to tune across the visible spectrum. Here we describe experimental investigations of a series of all-inorganic perovskite nanocrystals comprising caesium and lead atoms and their response to X-ray irradiation. These nanocrystal scintillators exhibit strong X-ray absorption and intense radioluminescence at visible wavelengths. Unlike bulk inorganic scintillators, these perovskite nanomaterials are solution-processable at a relatively low temperature and can generate X-ray-induced emissions that are easily tunable across the visible spectrum by tailoring the anionic component of colloidal precursors during their synthesis. These features allow the fabrication of flexible and highly sensitive X-ray detectors with a detection limit of 13 nanograys per second, which is about 400 times lower than typical medical imaging doses. We show that these colour-tunable perovskite nanocrystal scintillators can provide a convenient visualization tool for X-ray radiography, as the associated image can be directly recorded by standard digital cameras. We also demonstrate their direct integration with commercial flat-panel imagers and their utility in examining electronic circuit boards under low-dose X-ray illumination.

3.
Angew Chem Int Ed Engl ; 63(25): e202404177, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38634766

RESUMO

Long-lasting radioluminescence scintillators have recently attracted substantial attention from both research and industrial communities, primarily due to their distinctive capabilities of converting and storing X-ray energy. However, determination of energy-conversion kinetics in these nanocrystals remains unexplored. Here we present a strategy to probe and unveil energy-funneling kinetics in NaLuF4:Mn2+/Gd3+ nanocrystal sublattices through Gd3+-driven microenvironment engineering and Mn2+-mediated radioluminescence profiling. Our photophysical studies reveal effective control of energy-funneling kinetics and demonstrate the tunability of electron trap depth ranging from 0.66 to 0.96 eV, with the corresponding trap density varying between 2.38×105 and 1.34×107 cm-3. This enables controlled release of captured electrons over durations spanning from seconds to 30 days. It allows tailorable emission wavelength within the range of 520-580 nm and fine-tuning of thermally-stimulated temperature between 313-403 K. We further utilize these scintillators to fabricate high-density, large-area scintillation screens that exhibit a 6-fold improvement in X-ray sensitivity, 22 lp/mm high-resolution X-ray imaging, and a 30-day-long optical memory. This enables high-contrast imaging of injured mice through fast thermally-stimulated radioluminescence readout. These findings offer new insights into the correlation of radioluminescence dynamics with energy-funneling kinetics, thereby contributing to the advancement of high-energy nanophotonic applications.

4.
J Am Chem Soc ; 141(25): 9937-9945, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31199131

RESUMO

Chemodynamic therapy (CDT) employs Fenton catalysts to kill cancer cells by converting intracellular H2O2 into hydroxyl radical (•OH), but endogenous H2O2 is insufficient to achieve satisfactory anticancer efficacy. Despite tremendous efforts, engineering CDT agents with specific and efficient H2O2 self-supplying ability remains a great challenge. Here, we report the fabrication of copper peroxide (CP) nanodot, which is the first example of a Fenton-type metal peroxide nanomaterial, and its use as an activatable agent for enhanced CDT by self-supplying H2O2. The CP nanodots were prepared through coordination of H2O2 to Cu2+ with the aid of hydroxide ion, which could be reversed by acid treatment. After endocytosis into tumor cells, acidic environment of endo/lysosomes accelerated the dissociation of CP nanodots, allowing simultaneous release of Fenton catalytic Cu2+ and H2O2 accompanied by a Fenton-type reaction between them. The resulting •OH induced lysosomal membrane permeabilization through lipid peroxidation and thus caused cell death via a lysosome-associated pathway. In addition to pH-dependent •OH generation property, CP nanodots with small particle size showed high tumor accumulation after intravenous administration, which enabled effective tumor growth inhibition with minimal side effects in vivo. Our work not only provides the first paradigm for fabricating Fenton-type metal peroxide nanomaterials, but also presents a new strategy to improve CDT efficacy.


Assuntos
Antineoplásicos/uso terapêutico , Cobre/química , Peróxido de Hidrogênio/metabolismo , Neoplasias/tratamento farmacológico , Pontos Quânticos/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Radical Hidroxila/metabolismo , Lisossomos/efeitos dos fármacos , Camundongos , Pontos Quânticos/química , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Anal Chem ; 91(15): 10149-10155, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31305067

RESUMO

Optical biosensors that enable highly sensitive detection of biomolecules are useful for applications in early disease diagnosis. However, the presence of UV-vis-induced background fluorescence in biological samples is still challenging. Thanks to the weak scattering and nearly no absorption of biological chromophores under X-ray excitation, we describe the development of an X-ray nanocrystal scintillator-based aptasensor that is able to achieve sensitive and homogeneous detection of target biomolecules. In this work, aptamer-labeled lanthanide-doped nanocrystal scintillators was designed to rapidly and sensitively detect lysozyme via fluorescence resonance energy transfer (FRET) in human serum samples. Benefiting from the use of low-dose X-ray as an excitation source and high-efficiency luminescence of heavy atoms-contained nanocrystals, the proposed X-ray nanocrystal scintillator-based aptasensor can readily detect lysozyme with a high sensitivity up to 0.94 nM, as well as an excellent specificity and sample recoveries. Thus, our technique suggests that the X-ray scintillating aptasensor can create a new generation of autofluorescence-free high-sensitivity strategy for biomarker sensing in biomedical applications.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Fluorescência , Muramidase/sangue , Nanopartículas/química , Humanos , Raios X
6.
Anal Chem ; 90(11): 6992-6997, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29757612

RESUMO

Autofluorescence background in complex biological samples is a major challenge in achieving high sensitivity of fluorescence immunoassays (FIA). Here we report an X-ray luminescence-based immunoassay for high-sensitivity detection of biomarkers using X-ray scintillating nanotags. Due to the weak scattering and absorption of most biological chromophores by X-ray excitation, a low-dose X-ray source can be used to produce intense scintillating luminescence from the nanotags for autofluorescence-free biosensing. To demonstrate this concept, we designed and synthesized NaGdF4:Tb@NaYF4 core/shell nanoparticles as kind of high-efficiency X-ray scintillating nanotags, which are able to convert high-energy X-ray photons to visible light without autofluorescence in biological samples. Notably, strong X-ray absorption and minimized surface quenching arising from the heavy Gd3+/Tb3+ atoms and core/shell architecture of the nanoparticles were found to be critically important for high-efficiency X-ray excited luminescence for high-sensitivity biosensing. Our method allows for sensing alpha-fetoprotein (AFP) biomarkers with a detection limit down to 0.25 ng/mL. Moreover, the as-described X-ray luminescence immunoassay exhibited an excellent biological specificity, high stability, and sample recovery, implying an opportunity for applications in complex biological samples. Consequently, our method can be readily extended for multiplexing sensing and medical diagnosis.


Assuntos
Imunoensaio , Nanopartículas/química , Raios X , alfa-Fetoproteínas/análise , Animais , Biomarcadores/sangue , Células Cultivadas , Fluorescência , Humanos , Injeções Subcutâneas , Medições Luminescentes , Camundongos , Camundongos Nus , Nanopartículas/administração & dosagem , Neoplasias Experimentais/diagnóstico por imagem , Imagem Óptica , Tamanho da Partícula , Propriedades de Superfície
7.
Nanotechnology ; 28(46): 465702, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-28925921

RESUMO

Hypoxic tumor microenvironment (TME) is closely linked to tumor progression, heterogeneity and immune suppression. Therefore, the development of effective methods to overcome hypoxia and substantially enhance the immunotherapy efficacy remains a desirable goal. Herein, we engineered a biocompatible Au core/Pt shell nanoparticles (Au@Pt NPs) to reoxygenate the TME by reacting with endogenous H2O2. Treatment with Au@Pt NPs appeared to improve oxygen in intracellular environments and decrease hypoxia-inducible factor-1α expression. Furthermore, the integration of high catalytic efficiency of Au@Pt NPs with cytokine-induced killer (CIK) cell immunotherapy, could lead to significantly improve the effect of CIK cell-mediated cytotoxicity. These results suggest great potential of Au@Pt NPs for regulation of the hypoxic TME and enhance immune cell mediated anti-tumor immunity.


Assuntos
Materiais Biomiméticos , Catalase , Ouro , Imunidade Celular/efeitos dos fármacos , Imunoterapia , Nanopartículas Metálicas , Neoplasias , Platina , Materiais Biomiméticos/química , Materiais Biomiméticos/uso terapêutico , Catalase/química , Catalase/uso terapêutico , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/imunologia , Linhagem Celular Tumoral , Ouro/química , Ouro/farmacologia , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Platina/química , Platina/farmacologia
8.
Adv Mater ; 35(52): e2309413, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37950585

RESUMO

X-ray imaging plays an increasingly crucial role in clinical radiography, industrial inspection, and military applications. However, current X-ray imaging technologies have difficulty in protecting against information leakage caused by brute force attacks via trial-and-error. Here high-confidentiality X-ray imaging encryption by fabricating ultralong radioluminescence memory films composed of lanthanide-activated nanoscintillators (NaLuF4 : Gd3+ or Ce3+ ) with imperceptible purely-ultraviolet (UV) emission is reported. Mechanistic investigations unveil that ultralong X-ray memory is attributed to the long-lived trapping of thermalized charge carriers within Frenkel defect states and subsequent slow release in the form of imperceptible radioluminescence. The encrypted X-ray imaging can be securely stored in the memory film for more than 7 days and optically decoded by perovskite nanocrystal. Importantly, this encryption strategy can protect X-ray imaging information against brute force trial-and-error attacks through the perception of lifetime change in the persistent radioluminescence. It is further demonstrated that the as-fabricated flexible memory film enables achieving of 3D X-ray imaging encryption of curved objects with a high spatial resolution of 20 lp/mm and excellent recyclability. This study provides valuable insights into the fundamental understanding of X-ray-to-UV conversion in nanocrystal lattices and opens up a new avenue toward the development of high-confidential 3D X-ray imaging encryption technologies.

9.
Front Chem ; 9: 682006, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981679

RESUMO

Detection of haloalkanes is of great industrial and scientific importance because some haloalkanes are found serious biological and atmospheric issues. The development of a flexible, wearable sensing device for haloalkane assays is highly desired. Here, we develop a paper-based microfluidic sensor to achieve low-cost, high-throughput, and convenient detection of haloalkanes using perovskite nanocrystals as a nanoprobe through anion exchanging. We demonstrate that the CsPbX3 (X = Cl, Br, or I) nanocrystals are selectively and sensitively in response to haloalkanes (CH2Cl2, CH2Br2), and their concentrations can be determined as a function of photoluminescence spectral shifts of perovskite nanocrystals. In particular, an addition of nucleophilic trialkyl phosphines (TOP) or a UV-photon-induced electron transfer from CsPbX3 nanocrystals is responsible for achieving fast sensing of haloalkanes. We further fabricate a paper-based multichannel microfluidic sensor to implement fast colorimetric assays of CH2Cl2 and CH2Br2. We also demonstrate a direct experimental observation on chemical kinetics of anion exchanging in lead-halide perovskite nanocrystals using a slow solvent diffusion strategy. Our studies may offer an opportunity to develop flexible, wearable microfluidic sensors for haloalkane sensing, and advance the in-depth fundamental understanding of the physical origin of anion-exchanged nanocrystals.

10.
Adv Mater ; 33(43): e2104749, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34545653

RESUMO

Low-dose, high-resolution X-ray imaging is vital for medical diagnostics and material/device analyses. Current X-ray imagers are dominated by expensive inorganic materials via high-temperature solid processes (up to 1700 °C, e.g., CsI:Tl) with heavy metal elements. It is essential to search for new materials as X-ray imagers with low growth temperature, low cost, high sensitivity, along with high chemical and environmental stability. Here, 9,10-diphenylanthracene (9,10-DPA) single crystals are used as a representative model, which are grown via low-temperature solution processes, exhibiting intense X-ray radioluminescence with ultrahigh photon-conversion efficiency, ultrafast response and high sensitivity. The resolution of devices based on organic crystals exceeds 20.00 lp mm-1 . Meanwhile the crystals exhibit high cycle performance under X-ray irradiation and environmental stability. This study demonstrates that organic semiconductors have potential use in low-cost, high-sensitivity and low-dose X-ray imaging systems.


Assuntos
Radiografia
11.
Research (Wash D C) ; 2021: 9892152, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35028585

RESUMO

X-ray imaging is a low-cost, powerful technology that has been extensively used in medical diagnosis and industrial nondestructive inspection. The ability of X-rays to penetrate through the body presents great advances for noninvasive imaging of its internal structure. In particular, the technological importance of X-ray imaging has led to the rapid development of high-performance X-ray detectors and the associated imaging applications. Here, we present an overview of the recent development of X-ray imaging-related technologies since the discovery of X-rays in the 1890s and discuss the fundamental mechanism of diverse X-ray imaging instruments, as well as their advantages and disadvantages on X-ray imaging performance. We also highlight various applications of advanced X-ray imaging in a diversity of fields. We further discuss future research directions and challenges in developing advanced next-generation materials that are crucial to the fabrication of flexible, low-dose, high-resolution X-ray imaging detectors.

12.
Adv Mater ; 33(25): e2101852, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33988874

RESUMO

Solution-processed metal-halide perovskites hold great promise in developing next-generation low-cost, high-performance photodetectors. However, the weak absorption of perovskites beyond the near-infrared spectral region posts a stringent limitation on their use for broadband photodetectors. Here, the rational design and synthesis of an upconversion nanoparticles (UCNPs)-perovskite nanotransducer are presented, namely UCNPs@mSiO2 @MAPbX3 (X = Cl, Br, or I), for broadband photon detection spanning from X-rays, UV, to NIR. It is demonstrated that, by in situ crystallization and deliberately tuning the material composition in the lanthanide core and perovskites, the nanotransducers allow for a high stability and show a wide linear response to X-rays of various dose rates, as well as UV/NIR photons of various power densities. The findings provide an opportunity to explore the next-generation broadband photodetectors in the field of high-quality imaging and optoelectronic devices.

13.
Nat Commun ; 15(1): 5754, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982081
14.
ACS Nano ; 13(2): 2520-2525, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30721023

RESUMO

Scintillators, which are capable of converting ionizing radiation into visible photons, are an integral part of medical, security, and commercial diagnostic technologies such as X-ray imaging, nuclear cameras, and computed tomography. Conventional scintillator fabrication typically involves high-temperature sintering, generating agglomerated powders or large bulk crystals, which pose major challenges for device integration and processability. On the other hand, colloidal quantum dot scintillators cannot be cast into compact solid films with the necessary thickness required for most X-ray applications. Here, we report the room-temperature synthesis of a colloidal scintillator comprising CsPbBr3 nanosheets of large concentration (up to 150 mg/mL). The CsPbBr3 colloid exhibits a light yield (∼21000 photons/MeV) higher than that of the commercially available Ce:LuAG single-crystal scintillator (∼18000 photons/MeV). Scintillators based on these nanosheets display both strong radioluminescence (RL) and long-term stability under X-ray illumination. Importantly, the colloidal scintillator can be readily cast into a uniform crack-free large-area film (8.5 × 8.5 cm2 in area) with the requisite thickness for high-resolution X-ray imaging applications. We showcase prototype applications of these high-quality scintillating films as X-ray imaging screens for a cellphone panel and a standard central processing unit chip. Our radiography prototype combines large-area processability with high resolution and a strong penetration ability to sheath materials, such as resin and silicon. We reveal an energy transfer process inside those stacked nanosheet solids that is responsible for their superb scintillation performance. Our findings demonstrate a large-area solution-processed scintillator of stable and efficient RL as a promising approach for low-cost radiography and X-ray imaging applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA