Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Toxicol Environ Health A ; 87(5): 199-214, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38073506

RESUMO

Several medicinal plants have been administered to cancer patients attributed to their anticarcinogenic and chemoprotective properties, in addition to lower toxicity compared to traditional therapies. The aim was to investigate the antioxidant properties and carotenoid composition of aqueous extracts of Mentha piperita or Artemisia vulgaris which were previously found to exert beneficial effects on human health through diet. aqueous extracts exhibited potent antioxidant activity. A diversity of carotenoids was identified in these extracts using HPLC-PDA-MS/MS. Both extracts contained predominantly all-trans-lutein as the main component within this class. In order to investigate antioxidant properties, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) techniques were used. The (3-4,5 dimethylthiazol-2, 5 diphenyl tetrazolium bromide) (MTT) and Crystal Violet assays assessed cellular cytotoxicity. Assessments of presence of reactive species were carried out following exposure of oral squamous cell carcinoma cell line (SCC-4) to various aqueous extracts of M piperita or A vulgaris utilizing dichlorofluorescein diacetate (DCFH-DA) and nitric oxide (NO) assays. Exposure to these extracts induced severe cytotoxic effects, which led to investigation of the biochemical and molecular mechanisms underlying this observed effect. Data demonstrated that both solutions induced oxidative stress and DNA damage, especially at higher concentrations using agarose gel subjected to electrophoresis. It is known that exposure to excess amounts of antioxidants results in a prooxidant effect which is beneficial in cancer therapy. Further, the extracts were found to reduce viability of SCC-4 in culture, indicating that this antitumoral activity may be of therapeutic importance and requires further study.


Assuntos
Artemisia , Carcinoma de Células Escamosas , Neoplasias Bucais , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Mentha piperita/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectrometria de Massas em Tandem , Clivagem do DNA , Compostos Fitoquímicos , Carotenoides/farmacologia
2.
J Toxicol Environ Health A ; 86(2-3): 51-68, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36543759

RESUMO

Vassobia breviflora (Sendtn.) Hunz is a plant of the Solanaceae family from South America and there are no apparent studies reported on the biological activity of the hexane extract. The aim of this investigation was to conduct phytochemical analyses using ESI-TOF-MS, while antioxidant activities were evaluated by the following methods 1,1-diphenyl-2-picrylhydrazyl (DPPH) 2,2"-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radical capture (ABTS), ferric reducing antioxidant power (FRAP), total antioxidant capacity (TAC), and total oxidant status (TOS). Antimicrobial activities were performed by determining the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and antibiofilm formed. Cytotoxicity was measured by MTT and dsDNA PicoGreen tests, beyond the production of reactive oxygen species (ROS) determined by Dichlorodihydrofluorescein diacetate (DCFH-DA). The hexane extract showed the presence of 5 (choline, pantothenic acid, calystegine B, lanciphodylactone I, and 15"-cis-zeaxanthin) compounds detected. V. breviflora extract demonstrated reliable results utilizing different antioxidant methods. In antibacterial activity, V. breviflora extract exhibited inhibitory, bactericidal, and antibiofilm action in biofilm-forming bacteria. The hexane extract exhibited cytotoxicity against melanoma, lung cancer, glioblastoma, leukemia, uterine colon, and hepatocarcinoma tumor cells. In addition, all tested strains resulted in increased production of ROS. This plant extract may be considered in future as an alternative for development of new therapeutic options aimed at the treatment of diverse pathologies.


Assuntos
Antioxidantes , Solanaceae , Antioxidantes/farmacologia , Antioxidantes/química , Espécies Reativas de Oxigênio , Hexanos , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologia
3.
J Toxicol Environ Health A ; 86(21): 816-832, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37667472

RESUMO

The particular plant species found in southern Brazil, Vassobia breviflora (Solanaceae) has only a few apparent studies examining its biological effect. Thus, the aim of the present study was to determine the activity of the acetone extract fraction derived from V. breviflora. Four compounds were identified by ESI-qTOF-MS: eucalrobusone R, aplanoic acid B, pheophorbide A, and pheophytin A. In addition, 5 compounds were identified by HPLC-PDA-MS/MS: all-trans-lutein, 15-cis-lutein, all-trans-ß-carotene, 5,8-epoxy-ß-carotene, and cis-ß-carotene. Cell lines A549 (lung cancer), A375 (melanoma cancer) and HeLa (cervical cancer) were incubated with different concentrations of each studied extract using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH), and 2'-7'dichlorofluorescin diacetate (DCFH-DA) assays. The acetonic extract exhibited cytotoxic activity at a concentration of 0.03 mg/ml in the HeLa strain and 0.1 mg/ml in the others. In addition to increased production of reactive oxygen species (ROS). Antibacterial activity was assessed utilizing minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in 9 ATCCs strains and 7 clinical isolates, as well as determination of biofilm production. Data demonstrated that MIC and MBC were approximately 256 mg/ml in most of the strains tested and antibiofilm effect at S. aureus, S. epidermidis, A. baumannii, and E. faecalis, concentrations below the MIC. Genotoxic activity on plasmid DNA did not produce significant elevated levels in breaks in the isolated genetic material.


Assuntos
Acetona , Luteína , Staphylococcus aureus , Espectrometria de Massas em Tandem , beta Caroteno , Brasil
4.
Exp Parasitol ; 249: 108520, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37001581

RESUMO

Chagas Disease (CD) affects around eight million people worldwide. It is considered a neglected disease that presents few treatment options with efficacy only in the acute phase. Nanoparticles have many positive qualities for treating parasite infections and may be effectively and widely employed in clinical medicine. This research aimed to evaluate the nanoencapsulated benznidazole treatment in animals experimentally infected with Trypanosoma cruzi. To analyze the treatment efficacy, we evaluated survival during thirty days, parasitemia, genotoxicity, and heart and liver histopathology. Thirty-five female Swiss mice were organized into seven groups characterizing a dose curve: A - Negative control (uninfected animals), B - Positive control (infected animals), C - Benznidazole (BNZ) 100 mg/kg (infected animals), D - 5 mg/kg Benznidazole nanocapsules (NBNZ) (infected animals), E - 10 mg/kg Benznidazole nanocapsules (infected animals), F - 15 mg/kg Benznidazole nanocapsules (infected animals), G - 20 mg/kg Benznidazole nanocapsules (infected animals). The animals were infected with the Y strain of T. cruzi intraperitoneally. The treatment was administered for eight days by oral gavage. It was possible to observe that the treatment with the highest NBNZ dose presented efficacy similar to the standard benznidazole drug. The 20 mg/kg NBNZ dose was able to reduce parasitemia, increase survival, and drastically reduce heart and liver tissue damage compared to the 100 mg/kg BNZ dose. Moreover, it showed a lower DNA damage index than the BNZ treatment. In conclusion, the nanoencapsulation of BNZ promotes an improvement in parasite proliferation control with a five times smaller dose relative to the standard dose of free BNZ, thus demonstrating to be a potential innovative therapy for CD.


Assuntos
Doença de Chagas , Nanocápsulas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Camundongos , Animais , Feminino , Parasitemia/tratamento farmacológico , Parasitemia/parasitologia , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Doença de Chagas/parasitologia , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico
5.
Drug Chem Toxicol ; 46(1): 155-165, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34930069

RESUMO

Curcumin is an active polyphenol substance found in the highest concentrations in the roots of Curcuma longa. Its health benefits have led to recent increases in the consumption of curcumin. It has anti-inflammatory and antioxidant activities and is a potent neuroprotective against diseases of the brain. Nevertheless, its low bioavailability and its relative difficulty crossing the blood-brain barrier limit curcumin's use for these purposes. Curcumin-loaded nanoparticles may be an effective treatment for several diseases although there is a paucity of studies reporting its safety in the central nervous system (CNS). Therefore, this study aimed to identify non-neurotoxic concentrations of free curcumin and two nanoformulations of curcumin. Cell lines BV-2 and SH-SY5Y, both originating from the CNS, were evaluated after 24, 48, and 72 h of treatment with free curcumin and nanocapsules We measured viability, proliferation, and dsDNA levels. We measured levels of reactive oxygen species and nitric oxide as proxies for oxidative stress in culture supernatants. We found that free curcumin was toxic at 10 and 20 µM, principally at 72 h. Nanoformulations were more neurotoxic than the free form. Safe concentrations of free curcumin are between 1-5 µM, and these concentrations were lower for nanoformulations. We determined the ideal concentrations of free curcumin and nanocapsules serving as a basis for studies of injuries that affect the CNS.


Assuntos
Curcumina , Nanocápsulas , Neuroblastoma , Humanos , Curcumina/farmacologia , Nanocápsulas/toxicidade , Linhagem Celular , Estresse Oxidativo
6.
AAPS PharmSciTech ; 24(6): 138, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349650

RESUMO

In previous studies, we developed a hydrogel formulation containing silibinin-loaded pomegranate oil nanocapsules (HG-NCSB) that had improved in vivo anti-inflammatory action in comparison to non-encapsulated silibinin. To determine skin safety and whether the nanoencapsulation influences silibinin skin permeation, NCSB skin cytotoxicity, HG-NCSB permeation in human skin, and a biometric study with healthy volunteers were conducted. The formulation of nanocapsules was prepared by the preformed polymer method while the HG-NCSB was obtained by thickening the suspension of nanocarriers with gellan gum. The cytotoxicity and phototoxicity of nanocapsules were assessed in Keratinocytes (HaCaT) and fibroblast (HFF-1) using the MTT assay. The hydrogels were characterized regarding the rheological, occlusive, and bioadhesive properties, and silibinin permeation profile in human skin. The clinical safety of HG-NCSB was determined by cutaneous biometry in healthy human volunteers. NCSB yielded better cytotoxicity results than the blank nanocapsules (NCPO). NCSB did not cause photocytotoxicity, while NCPO and the non-encapsulated substances (SB and pomegranate oil) were phototoxic. The semisolids presented non-Newtonian pseudoplastic flow, adequate bioadhesiveness, and low occlusive potential. The skin permeation demonstrated that HG-NCSB retained a higher SB amount in the outermost layers than HG-SB. In addition, HG-SB reached the receptor medium and had a superior concentration of SB in the dermis layer. In the biometry assay, there was no significant cutaneous alteration after the administration of any of the HGs. Nanoencapsulation promoted greater SB retention in the skin, averted percutaneous absorption, and made the topical use of SB and pomegranate oil safer.


Assuntos
Nanocápsulas , Punica granatum , Humanos , Silibina , Hidrogéis , Pele , Biometria
7.
Nutr Neurosci ; 25(6): 1188-1199, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33170113

RESUMO

INTRODUCTION: Neuropsychiatric diseases are responsible for one of the highest burden of morbidity and mortality worldwide. These illnesses include schizophrenia, bipolar disorder, and major depression. Individuals affected by these diseases may present mitochondrial dysfunction and oxidative stress. Additionally, patients also have increased peripheral and neural chronic inflammation. The Brazilian fruit, açaí, has been demonstrated to be a neuroprotective agent through its recovery of mitochondrial complex I activity. This extract has previously shown anti-inflammatory effects in inflammatory cells. However, there is a lack of understanding of potential anti-neuroinflammatory mechanisms, such as cell cycle involvement. OBJECTIVE: The objective of this study is to evaluate the anti-neuroinflammatory potential of an açaí extract in lipopolysaccharide-activated BV-2 microglia cells. METHODS: Açaí extract was produced and characterized through high performance liquid chromatography. Following açaí extraction and characterization, BV-2 microglia cells were activated with LPS and a dose-response curve was generated to select the most effective açaí dose to reduce cellular proliferation. This dose was then used to assess reactive oxygen species (ROS) production, double-strand DNA release, cell cycle modulation, and cytokine and caspase protein expression. RESULTS: Characterization of the açaí extract revealed 10 bioactive molecules. The extract reduced cellular proliferation, ROS production, and reduced pro-inflammatory cytokines and caspase 1 protein expression under 1 µg/mL in LPS-activated BV-2 microglia cells but had no effect on double strand DNA release. Additionally, açaí treatment caused cell cycle arrest, specifically within synthesis and G2/Mitosis phases. CONCLUSION: These results suggest that the freeze-dried hydroalcoholic açaí extract presents high anti-neuroinflammatory potential.


Assuntos
Euterpe , Microglia , Extratos Vegetais , Animais , Linhagem Celular , Citocinas/metabolismo , Euterpe/química , Lipopolissacarídeos , Camundongos , Microglia/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo
8.
J Toxicol Environ Health A ; 85(23): 972-987, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36208226

RESUMO

Cancer and infectious diseases are among the leading causes of death in the world. Despite the diverse array of treatments available, challenges posed by resistance, side effects, high costs, and inaccessibility persist. In the Solanaceae plant family, few studies with Vassobia breviflora species relating to biological activity are known, but promising results have emerged. The phytochemicals present in the ethyl acetate fraction were obtained using ESI-MS-QTOF, and the antioxidants assays 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radical capture (ABTS), plasma ferric reduction capacity (FRAP), and total antioxidant capacity (TAC). Cytotoxic activity was evaluated by MTT, Neutral Red, and lactate dehydrogenase (LDH) released. The production of reactive oxygen species, nitric oxide, and purinergic enzymes was also investigated. Antibacterial activity was measured through minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and antibiofilm activity, in addition to genotoxicity in plasmid DNA. Five major masses were identified D-glucopyranose II, allyl disulfide, γ-lactones, pharbilignoside, and one mass was not identified. V. breviflora exhibited relevant antioxidant and cytotoxic activity against the HeLa cell line and enhanced expression effect in modulation of purinergic signaling. Antibacterial activities in the assays in 7 ATCC strains and 8 multidrug-resistant clinical isolates were found. V. breviflora blocked biofilm formation in producing bacteria at the highest concentrations tested. However, there was no plasmid DNA cleavage at the concentrations tested. Data demonstrated that V. breviflora exhibited an antioxidant effect through several methods and proved to be a promising therapeutic alternative for use against tumor cells via purinergic signaling and multidrug-resistant microorganisms, presenting an anti-biofilm effect.


Assuntos
Antioxidantes , Solanaceae , Acetatos , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Bactérias , DNA/farmacologia , Células HeLa , Humanos , Lactato Desidrogenases , Lactonas/farmacologia , Testes de Sensibilidade Microbiana , Vermelho Neutro/farmacologia , Óxido Nítrico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio , Ácidos Sulfônicos
9.
Exp Parasitol ; 241: 108345, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35985513

RESUMO

Haemonchus contortus is a highly pathogenic and prevalent helminth that causes many deaths in sheep herds. Anthelmintics are usually employed to overcome this issue; however, they do not guarantee immediate and lasting efficacy because of the occurrence of drug-resistant parasites. Among substances that are used in scientific studies for parasitic control, essential oils are known to have different pharmacological properties. However, they demonstrate instability owing to several factors, and therefore, nanoemulsification is considered an alternative to control the instability and degradability of these compounds. The objective of this study was to evaluate the cytotoxicity of nanoemulsions containing essential oil of Eucalyptus globulus against the blood of healthy sheep and to verify their activity against the parasite H. contortus in sheep. The results presented adequate nanotechnological characteristics (diameter 72 nm, PDI 0.2, zeta -11 mV, and acidic pH) and adequate morphology. Further, the corona effect and cytotoxic profiles of the free oil and nanoemulsion against blood cells from healthy sheep were evaluated. The tests results did not present a toxicity profile. For evaluating efficacy, we observed an important anthelmintic action of the nanoemulsion containing oil in comparison to the free oil; the results demonstrate a potential role of the nanoemulsion in the inhibition of egg hatchability and the development of larvae L1 to L3 (infective stage). Based on these results, we developed an important and potential anthelmintic alternative for the control of the parasite H. contortus.


Assuntos
Anti-Helmínticos , Hemoncose , Haemonchus , Óleos Voláteis , Doenças dos Ovinos , Animais , Anti-Helmínticos/uso terapêutico , Anti-Helmínticos/toxicidade , Óleo de Eucalipto/farmacologia , Hemoncose/tratamento farmacológico , Hemoncose/parasitologia , Hemoncose/veterinária , Larva , Óleos Voláteis/química , Óleos Voláteis/toxicidade , Ovinos , Doenças dos Ovinos/tratamento farmacológico , Doenças dos Ovinos/parasitologia
10.
Microb Pathog ; 141: 103989, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31982567

RESUMO

Rampant and uncontrolled use of antibiotics is a major concern for aquaculture; the practice foments the emergence of resistant strains of Streptococcus agalactiae, among other negative impacts. Constituents of plant essential oils such as nerolidol are being considered as replacements for synthetic drugs to support fish nutrition and health. There is evidence to suggest that nanotechnology may enhance the efficacy of natural bioactive compounds; this is a substantial advance for the development and sustainability of aquaculture. Against the backdrop of this evidence, we aimed determine whether dietary supplementation with free nerolidol and nerolidol-loaded nanospheres would exert bactericidal effects against S. agalactiae, as well as prevent S. agalactiae-induced brain oxidative damage. In Experiment I, we measured the antimicrobial properties of dietary supplementation of nerolidol and nerolidol nanosphere in terms of mortality, longevity and relative percent survival. Fish infected with S. agalactiae fed 0.5 and 1.0 mL nerolidol nanospheres kg/diet demonstrated lower mortality and higher relative percent survival than the control group, while longevity was higher in all infected plus supplementation groups. Experiment II showed significantly lower microbial loads in brains of fish infected with S. agalactiae that were fed 1.0 mL nerolidol nanospheres kg/diet than in the control group. Brain nerolidol levels were significantly higher in uninfected as well as infected fish supplemented with nerolidol nanospheres than in fish supplemented with free nerolidol. Finally, brain reactive oxygen species and lipid peroxidation levels were higher in infected fish supplemented with basal diet compared to uninfected fish and supplemented with basal diet, and the supplementation with 1.0 mL/kg nerolidol nanospheres prevented this augmentation caused by infection. These data suggest that dietary supplementation with nerolidol nanospheres (1.0 mL/kg diet) has potent bactericidal effects in terms of augmentation of fish longevity and survival, and reduction of brain microbial loads. Also, S. agalactiae-induced brain oxidative damage that contributed to disease pathogenesis, and the dietary supplementation with nerolidol nanospheres (1.0 mL/kg diet) prevented this alteration. In summary, nanotechnology is a compelling approach to enhancing the efficacy of nerolidol, giving rise to reduction of S. agalactiae loads in fish brains.


Assuntos
Ciclídeos , Sesquiterpenos , Streptococcus agalactiae , Animais , Aquicultura , Carga Bacteriana/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Ciclídeos/crescimento & desenvolvimento , Ciclídeos/microbiologia , Dieta/veterinária , Suplementos Nutricionais , Composição de Medicamentos/métodos , Doenças dos Peixes/microbiologia , Mortalidade , Nanosferas , Nanotecnologia/métodos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/administração & dosagem , Sesquiterpenos/farmacologia , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/efeitos dos fármacos , Streptococcus agalactiae/patogenicidade , Taxa de Sobrevida
11.
Microb Pathog ; 148: 104496, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32910982

RESUMO

The aim of this study was to determine whether the addition of curcumin (free and encapsulated) to chick feed would minimize the negative effects on health and performance caused by daily intake of fumonisin. We used 50 birds, divided into five treatments: CP, basal diet with 600 mg/kg of fumonisin, with antibiotic and coccidiostatic agent; CU, 600 mg/kg of fumonisin and 50 mg/kg of curcumin; NC5, feed with 600 mg/kg of fumonisin and 5 mg of nano-curcumin/kg of feed; NC10, feed with 600 mg/kg of fumonisin and 10 mg of nano-curcumin/kg of feed; and CN, fumonisin-free diet, with antibiotic and coccidiostatic. We measured weights, weight gain, and serum biochemistry, as well as antioxidant and oxidant activities. Lower body weight and weight gain were observed in chicks that received feed with fumonisin; curcumin did not minimize this negative effect. Lower glucose and triglyceride levels were also observed in the NC10 group, while the highest cholesterol levels were observed in all groups of birds that consumed fumonisin compared to the CN group. Uric acid levels were significantly lower in CP than in CN. Levels of liver enzymes were higher in CP than in CN. The highest levels of thiobarbituric acid reactive substances were found in CP and CU, whereas ROS was higher in CU compared to CN. Superoxide dismutase activity was significantly lower in CP, while glutathione S-transferase activity was higher in the CP group. Catalase activity was lower in groups of birds that consumed fumonisin compared to CN. Taken together, these findings suggest that intake of curcumin-loaded nanocapsules (10 mg/kg) had hepaprotective and antioxidant effects in chicks artificially intoxicated with fumonisin, minimizing the negative effects caused by this mycotoxin.


Assuntos
Curcumina , Fumonisinas , Fusarium , Nanocápsulas , Ração Animal/análise , Animais , Galinhas , Curcumina/metabolismo , Curcumina/farmacologia , Fumonisinas/toxicidade , Fígado/metabolismo , Estresse Oxidativo
12.
An Acad Bras Cienc ; 92(4): e20191066, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33206785

RESUMO

Inflammatory dermatoses are prevalent worldwide, with impacts on the quality of life of patients and their families. The aim of this study was to determine the anti-inflammatory effects of Achyrocline satureioides oily extracts and nanocapsules on the skin using a mouse model of irritant contact dermatitis induced by croton oil, and a skin inflammation model induced by ultraviolet B (UVB) radiation. The mice were treated with 15 mg/ear oily extract (HG-OLAS) or nanocapsules (HG-NCAS) of A. satureioides incorporated into Carbopol® 940 hydrogels. We found that HG-OLAS and HG-NCAS formulations reduced ear edema in croton oil-induced lesions with maximum inhibitions of 54±7% and 74±3%, respectively. HG-OLAS and HG-NCAS formulations decreased ear edema induced by UVB radiation (0.5 J/cm2), with maximum inhibitions of 68±6% and 76±2% compared to the UVB radiation group, respectively. HG-OLAS and HG-NCAS modulated myeloperoxidase (MPO) activity after croton oil induction. Furthermore, croton oil and UVB radiation for 6 and 24 h, respectively, stimulated polymorphonuclear cells infiltration. The topical treatments reduced inflammatory processes, as shown by histological analysis. Together, the data suggest that topical application of A. satureioides oily extracts and nanocapsules produced antiedematogenic and anti-inflammatory effects. They constitute a compelling alternative for treatment of skin injuries.


Assuntos
Achyrocline , Dermatite de Contato , Nanocápsulas , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Dermatite de Contato/tratamento farmacológico , Edema/tratamento farmacológico , Humanos , Hidrogéis , Irritantes/uso terapêutico , Nanocápsulas/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Qualidade de Vida
13.
Arch Anim Nutr ; 74(5): 397-413, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32602378

RESUMO

The objectives of this study were to produce dog food containing curcumin replacing synthetic antioxidants, to evaluate its beneficial effects on animal growth and health. Curcumin (100 mg/kg) was added after the extrusion process along with the other micronutrients. The final concentration of curcumin was 32.9 mg/kg. The control feed was composed of the same ingredients without curcumin. After a storage of 6 months, feed composition and pH did not differ; however, the feed with curcumin showed lower protein oxidation, lipid peroxidation and higher total antioxidant capacity. After 2 months of feed production, 12 young Beagle dogs received either curcumin-containing food (n = 6)  or the control diet (n = 6). The animals were fed twice a day using individual kennels. Blood samples were taken on d 1, 35 and 42. During the first 30 d of the study, the animals had natural infectious diseases that were controlled with anti-protozoals and antibiotics. Greater numbers of red blood cells were observed in dogs fed with curcumin (d 35 and 45), and there were greater numbers of white blood cells as a consequence of increased neutrophils on d 42. At the end of the experiment, a significant reduction in the number of lymphocytes was observed in dogs that ingested curcumin (d 42), suggesting an anti-inflammatory effect, manifested as a decrease in globulin levels. In the final 15 d of the experiment, the animals were clinical healthy. Higher serum levels of glucose, urea, triglycerides and cholesterol were observed in dogs fed with curcumin. Curcumin increased the activity of several antioxidant enzymes in addition to non-protein thiols and the total antioxidant capacity in the serum, consequently reducing levels of oxygen reactive species. Curcumin supplementation of dogs did not favour growth or weight gain. Neverthless, it was concluded that curcumin improved animal health, with emphasis on the stimulation of the antioxidant system and evidence of an anti-inflammatory effect.


Assuntos
Ração Animal/análise , Antioxidantes/metabolismo , Curcumina/metabolismo , Cães/fisiologia , Animais , Antioxidantes/administração & dosagem , Curcumina/administração & dosagem , Dieta/veterinária , Suplementos Nutricionais/análise , Cães/crescimento & desenvolvimento , Saúde
14.
Microb Pathog ; 134: 103564, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31163248

RESUMO

Bacterial infections require special care since the indiscriminate use of antibiotics to treat them has been linked to the emergence of resistant strains. In this sense, phytoterapeutic alternatives such as curcumin and its nanocapsules have emerged as a promising supplement in optimizing availability of bioactives and reducing the development of antimicrobial resistance. Thus, the aim of this study was to verify the effects of pure and nanoencapsulated curcumin in the treatment of experimental listeriosis in gerbils regarding many aspects including antibacterial effect, antioxidant mechanisms involved and the energetic metabolism. Four groups were used containing 6 animals each: T0 (control), T1 (infected), T2 (infected and treated with free curcumin - dose of 30 mg/kg/day) and T3 (infected and treated with nanocapsules containing curcumin - a dose of 3 mg/kg/day). Treated animals received curcumin for 6 consecutive days starting 24 h after Listeria monocytogenes infection. All animals were euthanized on the 12th day after L. monocytogenes infection. Quantitative polymerase chain reaction (qPCR) identified L. monocytogenes DNA in the spleens of all animals of the T1 group, as well as T2 (2 out of 6) and T3 (5 out of 6). The weight of the spleens confirmed the infection, since it was larger in the T1 group, differing statistically from T0, and similarly to T2 and T3. Hepatic histopathological examination showed mild infiltration of neutrophils and macrophages, except for the T3 group (only 1/6). In the liver, the pyruvate kinase activity was higher in T1 and T2 compared to T0 and T3. The adenylate kinase activity did not differ between groups. The Na+/K+ATPase activity was lower in T1 group compared to T0 and T3. Lipoperoxidation was lower in the T3 group compared to groups T0, T1 and T2. The antioxidant capacity against peroxyl radicals was higher in T1, T2 and T3 groups compared to T0. In conclusion, free curcumin showed potent antibacterial effects; however, the nanoencapsulated form was able to minimize the effects caused by L. monocytogenes regarding tissue injury, changes on enzymes of the energetic metabolism, in addition to an antioxidant effect against lipoperoxidation.


Assuntos
Curcumina/administração & dosagem , Curcumina/uso terapêutico , Listeria monocytogenes/efeitos dos fármacos , Listeriose/tratamento farmacológico , Listeriose/veterinária , Nanocápsulas/química , Adenosina Trifosfatases , Adenilato Quinase/efeitos dos fármacos , Animais , Antibacterianos/administração & dosagem , Antibacterianos/química , Antibacterianos/uso terapêutico , Antioxidantes/farmacologia , Curcumina/química , Suplementos Nutricionais , Modelos Animais de Doenças , Gerbillinae , Homeostase/efeitos dos fármacos , Inflamação , Peroxidação de Lipídeos/efeitos dos fármacos , Listeriose/microbiologia , Fígado/patologia , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacologia , Ácidos Polimetacrílicos/uso terapêutico , Piruvato Quinase/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/efeitos dos fármacos , Baço/patologia
15.
Ecotoxicol Environ Saf ; 169: 207-215, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30448703

RESUMO

Mancozeb is a fungicide widely used in agriculture, mostly against the pathogen Glomerella cingulata responsible for the rot of ripe grape, but presents high toxicity. Strategies are sought to reduce the toxicity of this fungicide and alternative treatments are welcome. An alternative could be the use of clove oil, which has Eugenol as its major compound, and has antifungal potential against G. cingulata, however, Eugenol is susceptible to degradation processes which may compromise its efficacy. The nanoencapsulation of Mancozeb and Eugenol is a possible strategy to overcome the limitations of toxicity, solubility and instability of these compounds. Therefore, the objective of this study is to develop nanoemulsions containing Mancozeb (0.1 mg/mL) and Eugenol (33 mg/mL), isolated or associated, and evaluate the safety of these formulations through cytotoxicity, genotoxicity and ecotoxicity tests. Nanoemulsions were developed by the spontaneous emulsification method, cytotoxicity and genotoxicity were evaluated in healthy human cells through MTT, Dichlorofluorescein diacetate and Picogreen tests, and ecotoxicity assessment was carried out using the chronic toxicity test in springtails. After preparation, the physicochemical characterization of the nanoemulsions were performed which presented mean particle size between 200 and 300 nm, polydispersity index less than 0.3, negative zeta potential and acid pH. The nanoencapsulation was able to avoid the reduction of the cell viability caused by Mancozeb, while Eugenol was shown to be safe for cell use in both free and nanostructured forms, however the association of the two active compounds showed toxicity in the higher doses of Mancozeb. In the ecotoxicity tests, both free Mancozeb and Eugenol forms presented high toxic potential for soil, whereas the nanoencapsulation of these compounds did not cause a reduction in number of springtails. Therefore, from the tests performed, it was possible to observe that nanoencapsulation of Mancozeb and Eugenol is a safe alternative for the application of these compounds mainly in agriculture.


Assuntos
Artrópodes/efeitos dos fármacos , Dano ao DNA , Eugenol/toxicidade , Fungicidas Industriais/toxicidade , Maneb/toxicidade , Nanocápsulas/toxicidade , Zineb/toxicidade , Animais , Artrópodes/crescimento & desenvolvimento , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Emulsões , Eugenol/química , Fungicidas Industriais/química , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Maneb/química , Nanocápsulas/química , Tamanho da Partícula , Phyllachorales/efeitos dos fármacos , Solo/química , Testes de Toxicidade , Zineb/química
16.
Microb Pathog ; 118: 268-276, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29581028

RESUMO

The increase of microbial resistance generates the search for new substances with antimicrobial potential. The essential oil of Cymbopogon flexuosus (Lemongrass) stands out in the literature for its antimicrobial, insecticide and antioxidant properties, but it has high volatilization and low stability, and the nanoencapsulation of this oil could be an alternative to overcome these limitations. Thus, the objective of this study was to develop, for the first time, nanoemulsions containing the essential oil of C. flexuosus, through a method that does not use organic solvent and with temperature control to avoid the volatilization of the oil, characterize and evaluate of stability and the antimicrobial and antibiofilm activities of these nanoemulsions. Nanoemulsions presented adequate physicochemical characteristics (average size less than 200 nm, polydispersity index less than 0.3, negative zeta potential and acid pH) which were maintained during 90 days of storage, and the nanoencapsulation of the C. flexuosus oil enhanced its therapeutic efficacy against the microorganisms evaluated in this study compared to the free oil. These results are very promising because among the microorganisms that the nanoemulsion containing C. flexuosus was able to inhibit the formation of biofilm are the bacteria Pseudomonas aeruginosa and Staphylococcus aureus, which were recently listed by the World Health Organization as priority pathogens for development of new antibiotics.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Cymbopogon/química , Nanopartículas/química , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Antibacterianos/farmacologia , Antioxidantes , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Óleos Voláteis/química , Tamanho da Partícula , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Temperatura
17.
Microb Pathog ; 112: 230-242, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28970174

RESUMO

Candida species are the main responsible microorganisms for causing fungal infections worldwide, and Candida albicans is most frequently associated with infectious processes. Pseudomonas aeruginosa is a gram-negative bacterium commonly found in immunocompromised patients. The infection persistence caused by these microorganisms is often related to antimicrobial resistance and biofilm formation. In this context, the objective of the present study was to prepare and characterize nanoemulsions containing Eucalyptus globulus oil and to verify its antimicrobial and antibiofilm activities against P. aeruginosa and Candida spp. The nanoemulsions had a size of approximately 76 nm, a polydispersity index of 0.22, a zeta potential of - 9,42 mV and a pH of approximately 5.0. The E. globulus oil was characterized by gas chromatography, being possible to observe its main components, such as 1-8-Cineol (75.8%), p- Cymene (7.5%), α-Pinene (7.4%) and Limonene (6.4%). The antimicrobial activity of the nanoemulsion was determined from the macrodilution tests and the cell viability curve, where the minimum fungicidal concentration of 0.7 mg/mL for C. albicans and 1.4 mg/mL for C. tropicalis and C. glabrata were obtained. However, the nanoemulsions did not present antimicrobial activity against P. aeruginosa, since it contains only 5% of the oil, being ineffective for this microorganism. The nanoencapsulated oil action against the formed biofilm was evaluated by atomic force microscopy and calcofluor staining, and the nanoemulsion was more efficient for two of the three Candida species when compared to free oil.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Candida/efeitos dos fármacos , Eucalyptus/química , Nanopartículas/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Anti-Infecciosos/química , Benzenossulfonatos , Monoterpenos Bicíclicos , Biofilmes/crescimento & desenvolvimento , Cicloexanóis , Cicloexenos , Cimenos , Eucaliptol , Concentração de Íons de Hidrogênio , Limoneno , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Monoterpenos , Nanotecnologia , Óleos Voláteis/administração & dosagem , Tamanho da Partícula , Propriedades de Superfície , Terpenos
18.
Microb Pathog ; 113: 335-341, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29122674

RESUMO

Rapidly growing mycobacteria (RGM) are opportunistic microorganisms that can cause both local and disseminated infections. When in biofilm, these pathogens become highly resistant to antimicrobials used in clinical practice. Composed abundantly of polymeric substances, biofilms delay the diffusion of antimicrobials, preventing the drug from penetrating the deeper layers and having an effective action. Therefore, the search for new and alternative therapeutic options has become of fundamental importance. Natural products fall into these options, especially essential oils. However, these oils present problems, such as low miscibility in water (which decreases its bioavailability) and degradation by light and temperature. Thus, the objective of this work was to explore the action of free essential oil and nanoemulsions of Cymbopogon flexuosus on strains of RGM, in planktonic and sessile forms. In this work, standard strains of Mycobacterium fortuitum (ATCC 6841), Mycobacterium massiliense (ATCC 48898) and Mycobacterium abscessus (ATCC 19977) were used. The susceptibility of the microorganisms in planktonic form was obtained by conventional microdilution techniques and by cell viability curve. The analysis of the antibiofilm activity was performed by a semi-quantitative macrotechnique. The nanoemulsion exhibited significant antimicrobial activity, with minimum inhibitory concentration values lower than those presented by the free essential oil, against strains in the planktonic state. However, both were efficient in destroying the already formed biofilm, whereas only the free oil inhibited the formation of mycobacterial biofilm. This study demonstrated the therapeutic potential of C. flexuosus essential oil, especially in its nanostructured form, which can be demonstrated against infections caused by rapidly growing mycobacteria.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Cymbopogon/química , Micobactérias não Tuberculosas/efeitos dos fármacos , Óleos Voláteis/farmacologia , Exsudatos de Plantas/farmacologia , Biofilmes/crescimento & desenvolvimento , Brasil , Emulsões , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia
19.
Exp Appl Acarol ; 73(1): 129-138, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28852887

RESUMO

The aim of this study was to evaluate the capacity of pure and nanostructured cinnamon oil to control the infestation and reproductive efficiency of Rhipicephalus microplus on dairy cows. In vitro (stage I)-engorged female ticks were immersed in concentrations of 1.0, 5.0 and 10% of cinnamon oil on its pure form, and 0.5, 1.0, and 5.0% of the nanostructured form. 10% cinnamon oil (pure form) showed 100% efficacy, whereas concentrations of 1 and 5% were 62 and 97% efficacious, respectively. Nanocapsules and nanoemulsions containing cinnamon oil at 5% showed 95 and 97% efficacy, respectively. In vivo (stage II)-16 naturally tick-infested cows were divided into four groups of four animals each: Group A was composed of dairy cows sprayed with Triton (control); Group B was composed of dairy cows sprayed with cinnamon oil in its pure form (5%), whereas groups C and D were composed of dairy cows sprayed with nanocapsules and nanoemulsions, respectively, containing cinnamon oil at 0.5%. The ticks on each animal were counted on days 0, 1, 4 and 20 after spraying. Animals sprayed with pure and nanoencapsulated cinnamon oil carried significantly fewer ticks on days 1 and 4 post-treatment and were free of ticks on day 20 post-treatment. Ticks collected from these dairy cows (24 h after application) had impaired oviposition and larval inhibition, resulting in 90.5 and 100% efficacy when using pure and nanocapsules, respectively. In conclusion, the pure and nanostructured forms of cinnamon oil interfered with tick reproduction, whereas a significant acaricidal effect was found when applied onto cattle.


Assuntos
Acaricidas , Doenças dos Bovinos/prevenção & controle , Nanoestruturas , Óleos Voláteis , Rhipicephalus , Controle de Ácaros e Carrapatos , Infestações por Carrapato/veterinária , Animais , Bovinos , Feminino , Infestações por Carrapato/prevenção & controle
20.
Parasitology ; 141(6): 761-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24476993

RESUMO

This study aimed to develop and test the in vitro and in vivo effectiveness of diminazene aceturate encapsulated into liposomes (L-DMZ) on Trypanosoma evansi. To validate the in vitro tests with L-DMZ, the efficacy of a commercial formulation of diminazene aceturate (C-DMZ) was also assessed. The tests were carried out in culture medium for T. evansi, at concentrations of 0.25, 0.5, 1, 2 and 3 µg mL(-1) of L-DMZ and C-DMZ. A dose-dependent effect was observed for both formulations (L-DMZ and C-DMZ), with the highest dose-dependent mortality of trypomastigotes being observed at 1 and 3 h after the onset of tests with L-DMZ. The results of in vivo tests showed the same effects in the animals treated with L-DMZ and C-DMZ in single doses of 3.5 mg kg(-1) and for 5 consecutive days (3.5 mg kg(-1) day(-1)). It was possible to conclude that T. evansi showed greater in vitro susceptibility to L-DMZ when compared with C-DMZ. In vivo tests suggest that treatment with the L-DMZ and C-DMZ showed similar efficacy in vivo. The potential of the formulation developed in this study was clearly demonstrated, as it increased the efficacy of the treatment against trypanosomosis, but more studies are needed to increase the effectiveness in vivo.


Assuntos
Tripanossomicidas/administração & dosagem , Trypanosoma/efeitos dos fármacos , Tripanossomíase/tratamento farmacológico , Animais , Química Farmacêutica , Diminazena/administração & dosagem , Diminazena/análogos & derivados , Lipossomos , Masculino , Nanotecnologia , Ratos Wistar , Tripanossomíase/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA