Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 518(4): 611-618, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31445710

RESUMO

Autophagy has been associated with a variety of diseases especially aging. Human dermal fibroblasts (HDFs) can internalize and then degrade elastin, collagen and advanced glycation end products (AGEs) in lysosomes, which plays prominent roles in extracellular matrix homeostasis and AGEs removal in the dermis. Although autophagy has been reported to be decreased in photoaged fibroblasts, the underlying mechanism and its relevance to photoaging remain elusive. Here, we showed that GFP-LC3 puncta per cell, LC3Ⅰ/Ⅱ conversion and p62 expression were significantly increased, whereas beclin1 expression was not altered in UVA-induced photoaged fibroblasts compared with non-photoaged control. Moreover, autophagic flux was not significantly affected by chloroquine treatment, but was remarkably induced by rapamycin treatment in photoaged fibroblasts, suggesting that UVA-induced photoaging might inhibit autophagy at the degradation stage. Further lysosomal function studies demonstrated that degradation of formed autophagosomes, LC3Ⅱprotein and DQ-Green BSA was all dramatically decreased in photoaged fibroblasts. LysoSensor yellow/blue DND 160 staining and flow cytometry assays demonstrated that photoaging obviously attenuated lysosomal acidification. Also, decreased expression of cathepsin B, L and D was found in photoaged fibroblasts. These data suggest that lowered lysosomal acidity and decreased cathepsins expression might contribute to the inhibition of autophagic degradation, which might be crucial in the development of photoaging through impairing intracellular degradation.


Assuntos
Autofagia/efeitos da radiação , Fibroblastos/efeitos da radiação , Lisossomos/efeitos da radiação , Envelhecimento da Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Autofagossomos/metabolismo , Autofagossomos/efeitos da radiação , Células Cultivadas , Criança , Pré-Escolar , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Lisossomos/metabolismo , Pele/citologia , Pele/metabolismo , Pele/efeitos da radiação
2.
Photochem Photobiol ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212206

RESUMO

Transfer RNA-derived small RNAs (tsRNAs) refer to a newly established family of non-coding RNAs that regulate a diverse set of biological processes. However, the function of tsRNAs in skin photoaging remains unclear. This research aims to investigate the potential correlation between tsRNAs and skin photoaging. Human dermal fibroblasts (HDFs) were irradiated with UVA at 10 J/cm2 once a day lasting for 14 days, resulting in the establishment of a photoaging model induced by UVA. To identify the expression profiles and functions of tsRNAs, tsRNA sequencing and bioinformatics analysis were conducted. qPCR was employed to validate the results of differentially expressed (DE) tsRNAs. A total of 34 tsRNAs exhibited significant differential expression between the UVA and control groups (n = 3), with nine upregulated and 25 downregulated (log2 fold change >1.5, p-value <0.05). Six tsRNAs were selected at random and validated by qRT-PCR. The enrichment analysis of DE tsRNAs target genes indicated that the dysregulated tsRNAs appeared to be connected with cell cycle, DNA replication and the AGE-RAGE signaling pathway. The expression of tsRNAs was found to be aberrant in UVA-HDF. These findings provide insights into the UVA-induced damage and potential target genes for skin photoaging.

3.
Inflammation ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39009810

RESUMO

Fibroblast A20 suppresses advanced glycation end products (AGEs)-induced melanogenesis by inhibiting NLRP3 inflammasome activation. AGEs repress A20 expression and significantly m6A-methylate A20 mRNA in fibroblasts. YTHDF2 is the most studied m6A reader protein and can accelerate degradation of m6A-modified mRNA. Whether YTHDF2 regulates AGEs-induced A20 expression and pigmentation is unknown. In this study, we confirmed that YTHDF2 inversely regulated AGEs-BSA-inhibited A20 expression but facilitated AGEs-BSA-activated NF-κB signaling and NLRP3 inflammasome in fibroblasts via YTHDF2 knockdown and overexpression experiments. Mechanistically, YTHDF2 bound to m6A-modified A20 mRNA induced by AGEs-BSA and increased its degradation. Moreover, fibroblast YTHDF2 robustly promoted AGEs-BSA-induced IL-18 level in coculture supernatants and melanin content, tyrosinase activity, and expression of microphthalmia-associated transcription factor and tyrosinase in melanocytes, which were significantly blocked by IL-18 binding protein. Further, fibroblast YTHDF2 markedly increased AGEs-BSA-induced epidermal melanin level in cocultured ex vivo skin and MAPKs activation in melanocytes. Importantly, upregulated dermal YTHDF2 expression was negatively correlated with dermal A20 level and positively associated with both epidermal melanin and dermal AGEs content in sun-exposed skin and lesions of melasma and solar lentigo. These findings suggest that fibroblast YTHDF2 positively regulates AGEs-induced melanogenesis mainly via A20/ NF-κB /NLRP3 inflammasome/ IL-18 /MAPKs axis in an m6A-dependent manner and functions in photoaging-induced hyperpigmentation skin disorders.

4.
J Dermatol Sci ; 112(2): 71-82, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37741724

RESUMO

BACKGROUND: Advanced glycation end products (AGEs) promote melanogenesis through activating NLRP3 inflammasome in fibroblasts. Although A20 has been highlighted to inhibit NLRP3 inflammasome activation, its roles and mechanisms remain elusive in photoaging-associated pigmentation. OBJECTIVES: To determine the significance of fibroblast A20 in AGEs-induced NLRP3 inflammasome activation and pigmentation. METHODS: The correlation between A20 and AGEs or melanin was studied in sun-exposed skin and lesions of melasma and solar lentigo. We then investigated A20 level in AGEs-treated fibroblast and the effect of fibroblast A20 overexpression or knockdown on AGEs-BSA-induced NLRP3 inflammasome activation and pigmentation, respectively. Finally, the severity of NLRP3 inflammasome activation and pigmentation was evaluated after mice were injected intradermally with A20-overexpression adeno-associated virus and AGEs-BSA. RESULTS: Dermal A20 expression was decreased and exhibited negative correlation with either dermal AGEs deposition or epidermal melanin level in sun-exposed skin and pigmentary lesions. Moreover, both AGEs-BSA and AGEs-collagen robustly decreased A20 expression via binding to RAGE in fibroblasts. Further, A20 overexpression or depletion significantly decreased or augmented AGEs-BSA-induced activation of NF-κB pathway and NLRP3 inflammasome and IL-18 production and secretion in fibroblasts, respectively. Importantly, fibroblast A20 potently repressed AGEs-BSA-stimulated melanin content,tyrosinase activity,and expression of microphthalmia-associated transcription factor and tyrosinase in melanocytes. Particularly, fibroblast A20 significantly abrogated AGEs-BSA-promoted melanogenesis in ex vivo skin and mouse models. Additionally, fibroblast A20 inhibited AGEs-BSA-activated MAPKs in melanocytes and the epidermis of ex vivo skin. CONCLUSIONS: Fibroblast A20 suppresses AGEs-stimulate melanogenesis in photoaging-associated hyperpigmentation disorders by inhibiting NLRP3 inflammasome activation.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Animais , Camundongos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Produtos Finais de Glicação Avançada/metabolismo , Melaninas/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Fibroblastos/metabolismo
5.
J Invest Dermatol ; 142(10): 2591-2602.e8, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35421403

RESUMO

Advanced glycation end product (AGE) accumulation is significantly increased in the dermis of photoaged skin and plays crucial roles in photoaging. Although AGEs have been found to contribute to the yellowish discoloration of photoaged skin, their roles in photoaging-associated hyperpigmentation disorders have not been extensively studied. In this study, we observed that AGEs, NLRP3, and IL-18 were increased in the dermis of sun-exposed skin and lesions of melasma and solar lentigo and that dermal deposition of AGE was positively correlated with epidermal melanin levels. In addition, we found that AGE-BSA potently activated NLRP3 inflammasome and promoted IL-18 production and secretion in cultured fibroblasts, which was mediated by receptor for AGE/NF-κB pathway. Moreover, AGE-BSA significantly promoted melanogenesis by increasing tyrosinase activity and expression of microphthalmia-associated transcription factor and tyrosinase, which was dependent on NLRP3 inflammasome activation and IL-18 secretion in fibroblasts. Notably, AGE-collagen could activate NLRP3 inflammasome in fibroblasts and enhance melanogenesis. Furthermore, we found that IL-18 enhanced melanogenesis by binding to its receptor and activating p38 MAPK and extracellular signal‒regulated kinase 1/2 signaling pathways in melanocytes. Importantly, the promelanogenesis of AGE-BSA was verified in ex vivo cultured skin and mouse models. These findings suggest that dermal AGEs stimulate melanogenesis and contribute to the development of photoaging-associated hyperpigmentation disorders.


Assuntos
Inflamassomos , Lentigo , Animais , Fibroblastos/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Melaninas/metabolismo , Camundongos , Fator de Transcrição Associado à Microftalmia/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Monofenol Mono-Oxigenase/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Epigenomics ; 14(8): 431-449, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35285253

RESUMO

Background: To explore advanced glycation end products (AGEs)-induced m6A modification in fibroblasts and its potential role in photoaging. Methods: We studied m6A modification in AGEs-bovine serum albumin-treated fibroblasts with m6A-mRNA & lncRNA epitranscriptomic microarray and bioinformatics analysis. The m6A modification level was also investigated in skin samples. Results: m6A methylation microarray analysis revealed m6A modification profiles in AGEs-treated fibroblasts. Gene ontology, Kyoto Encyclopedia of Genes and Genomes, protein-protein interaction and competing endogenous RNA network analysis indicated that the genes of differentially methylated mRNAs and lncRNAs were mainly related to inflammation processes. We also found that AGEs-bovine serum albumin dose-dependently increased the m6A level and METTL14 expression in both fibroblasts and sun-exposed skin. Conclusion: Our study provided novel information regarding alterations of m6A modifications in AGEs-induced dermal fibroblasts and potential targets for treatment of photoaging.


Assuntos
Produtos Finais de Glicação Avançada , RNA Longo não Codificante , Envelhecimento da Pele , Fibroblastos/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Metiltransferases , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , Soroalbumina Bovina/metabolismo , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA