Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39406244

RESUMO

A recent publication describing the assembly of the Y chromosomes of 43 males was remarkable not only for its ambitious technical scope but also for the startling suggestion that the boundary of the pseudoautosomal region 1 (PAR1), where the human X and Y chromosomes engage in crossing-over during male meiosis, lies 500 kb distal to its previously reported location. Where is the boundary of the human PAR1? We first review the evidence that mapped the PAR boundary, or PAB, before the human genome draft sequence was produced, then examine post-genomic datasets for evidence of crossing-over between the X and Y, and lastly re-examine contiguous sequence assemblies of the PAR-NPY boundary to see whether they support a more distal PAB. We find ample evidence of X-Y crossovers throughout the 500 kb in question, some as close as 246 bp to the previously reported PAB. Our new analyses, combined with previous studies over the past 40 years, provide overwhelming evidence to support the original position and narrow the probable location of the PAB to a 201-bp window.

2.
Nat Commun ; 12(1): 3090, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035281

RESUMO

Glycogen Storage Disease 1a (GSD1a) is a rare, inherited metabolic disorder caused by deficiency of glucose 6-phosphatase (G6Pase-α). G6Pase-α is critical for maintaining interprandial euglycemia. GSD1a patients exhibit life-threatening hypoglycemia and long-term liver complications including hepatocellular adenomas (HCAs) and carcinomas (HCCs). There is no treatment for GSD1a and the current standard-of-care for managing hypoglycemia (Glycosade®/modified cornstarch) fails to prevent HCA/HCC risk. Therapeutic modalities such as enzyme replacement therapy and gene therapy are not ideal options for patients due to challenges in drug-delivery, efficacy, and safety. To develop a new treatment for GSD1a capable of addressing both the life-threatening hypoglycemia and HCA/HCC risk, we encapsulated engineered mRNAs encoding human G6Pase-α in lipid nanoparticles. We demonstrate the efficacy and safety of our approach in a preclinical murine model that phenotypically resembles the human condition, thus presenting a potential therapy that could have a significant therapeutic impact on the treatment of GSD1a.


Assuntos
Modelos Animais de Doenças , Terapia Genética/métodos , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio/terapia , RNA Mensageiro/genética , Animais , Linhagem Celular Tumoral , Citocinas/sangue , Citocinas/metabolismo , Glucose-6-Fosfatase/metabolismo , Glicogênio/metabolismo , Doença de Depósito de Glicogênio/genética , Doença de Depósito de Glicogênio/patologia , Células HeLa , Humanos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nanopartículas/administração & dosagem , Nanopartículas/química , RNA Mensageiro/administração & dosagem , RNA Mensageiro/química , Resultado do Tratamento , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA