Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 6(4): 1566-1576, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36947679

RESUMO

Direct ink writing (DIW) additive manufacturing is a versatile 3D printing technique for a broad range of materials. DIW can print a variety of materials provided that the ink is well-engineered with appropriate rheological properties. DIW could be an ideal technique in tissue engineering to repair and regenerate deformed or missing organs or tissues, for example, bone and tooth fracture that is a common problem that needs surgeon attention. A critical criterion in tissue engineering is that inserts must be compatible with their surrounding environment. Chemically produced calcium-rich materials are dominant in this application, especially for bone-related applications. These materials may be toxic leading to a rejection by the body that may need secondary surgery to repair. On the other hand, there is an abundance of biowaste building blocks that can be used for grafting with little adverse effect on the body. In this work, we report a bioderived ink made entirely of calcium derived from waste animal bones using a benign process. Calcium nanoparticles are extracted from the bones and the ink prepared by mixing with different biocompatible binders. The ink is used to print scaffolds with controlled porosity that allows better growth of cells. DIW printed parts show better mechanical properties and biocompatibility that are important for the grafting application. Degradation tests and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay study were done to examine the biocompatibility of the extracted materials. In addition, discrete element modeling and computational fluid dynamics numerical methods are used in Rocky and Ansys software programs. This work shows that biowaste materials if well-engineered can be a never-ending source of raw materials for advanced application in orthopedic grafting.


Assuntos
Materiais Biocompatíveis , Cálcio , Animais , Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Impressão Tridimensional , Porosidade
2.
Sci Adv ; 5(5): eaau9785, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31093523

RESUMO

Upcoming advancements in flexible technology require mechanically compliant dielectric materials. Current dielectrics have either high dielectric constant, K (e.g., metal oxides) or good flexibility (e.g., polymers). Here, we achieve a golden mean of these properties and obtain a lightweight, viscoelastic, high-K dielectric material by combining two nonpolar, brittle constituents, namely, sulfur (S) and selenium (Se). This S-Se alloy retains polymer-like mechanical flexibility along with a dielectric strength (40 kV/mm) and a high dielectric constant (K = 74 at 1 MHz) similar to those of established metal oxides. Our theoretical model suggests that the principal reason is the strong dipole moment generated due to the unique structural orientation between S and Se atoms. The S-Se alloys can bridge the chasm between mechanically soft and high-K dielectric materials toward several flexible device applications.

3.
ACS Appl Mater Interfaces ; 10(48): 41757-41762, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30379531

RESUMO

Natural building blocks like proteins and hydroxyapatite (HA) are found in abundance. However, their effective utilization to fabricate environment-friendly, strong, stiff, and tough materials remains a challenge. This work reports on the synthesis of a layered material from entirely natural building blocks. A simple process to extract HA from bones, while keeping collagen intact, is presented. These HA nanocrystals have a high aspect ratio as a result of the extraction method that largely retains the pristine nature of the HA. To fabricate the materials, polymerized egg white is used to induce toughness to the crystals where it acts like a load transfer entity between the crystals. As shown by atomic force microscope modulus mapping, the result is a layered material with a modulus that ranges from 3 to 180 GPa. Furthermore, the material exhibits self-stiffening behavior. Hydrogen and ionic bonds are likely to regulate the chemical interactions at the egg white/HA interface and are likely to be responsible for the observed high toughness and stiffness, respectively. The use of the HA/egg white composite as printed scaffolds is also demonstrated together with their biocompatibility.


Assuntos
Osso e Ossos/química , Durapatita/química , Nanopartículas/química , Ovalbumina/química , Impressão Tridimensional , Animais , Humanos
4.
Adv Mater ; 30(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29141112

RESUMO

Schwartzites are 3D porous solids with periodic minimal surfaces having negative Gaussian curvatures and can possess unusual mechanical and electronic properties. The mechanical behavior of primitive and gyroid schwartzite structures across different length scales is investigated after these geometries are 3D printed at centimeter length scales based on molecular models. Molecular dynamics and finite elements simulations are used to gain further understanding on responses of these complex solids under compressive loads and kinetic impact experiments. The results show that these structures hold great promise as high load bearing and impact-resistant materials due to a unique layered deformation mechanism that emerges in these architectures during loading. Easily scalable techniques such as 3D printing can be used for exploring mechanical behavior of various predicted complex geometrical shapes to build innovative engineered materials with tunable properties.

5.
ACS Nano ; 12(11): 11219-11228, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30408411

RESUMO

Conductive epoxy composites are of great interest due to their applications in electronics. They are usually made by mixing powdered conductive fillers with epoxy. However, the conductivity of the composite is limited by the low filler content because increasing filler content causes processing difficulties and reduces the mechanical properties of the epoxy host. We describe here the use of ultra-stiff graphene foams (uGFs) as three-dimensional (3D) continuous conductive fillers for epoxy resins. The powder metallurgy method was used to produce the dense uGFs monoliths that resulted in a very high filler content of 32 wt % in the uGF-epoxy composite, while the density of epoxy was only increased by 0.09 g/cm3. The composite had an electrical conductivity of 41.0 ± 6.3 S/cm, which is among the highest of all of the polymer-based composites with non-conductive polymer matrices and comparable with the conductive polymer matrices reported to date. The compressive modulus of the composite showed a remarkable improvement of >1700% compared to pure epoxy. We have demonstrated that the 3D uGF filler substantially improves the conductivity and reinforces the polymer matrix with a high filler content while retaining a density similar to that of the epoxy alone.

6.
Adv Mater ; 30(28): e1707416, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29845669

RESUMO

Laser-induced graphene (LIG), a graphene structure synthesized by a one-step process through laser treatment of commercial polyimide (PI) film in an ambient atmosphere, has been shown to be a versatile material in applications ranging from energy storage to water treatment. However, the process as developed produces only a 2D product on the PI substrate. Here, a 3D LIG foam printing process is developed on the basis of laminated object manufacturing, a widely used additive-manufacturing technique. A subtractive laser-milling process to yield further refinements to the 3D structures is also developed and shown here. By combining both techniques, various 3D graphene objects are printed. The LIG foams show good electrical conductivity and mechanical strength, as well as viability in various energy storage and flexible electronic sensor applications.

7.
ACS Nano ; 11(1): 806-813, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-27977930

RESUMO

Building three-dimensional (3D) structures from their constituent zero-, one-, and two-dimensional nanoscale building blocks in a bottom-up assembly is considered the holey grail of nanotechnology. However, fabricating such 3D nanostructures at ambient conditions still remains a challenge. Here, we demonstrate an easily scalable facile method to fabricate 3D nanostructures made up of entirely zero-dimensional silicon dioxide (SiO2) nanoparticles. By combining functional groups and vacuum filtration, we fabricate lightweight and highly structural stable 3D SiO2 materials. Further synergistic effect of material is shown by addition of a 2D material, graphene oxide (GO) as reinforcement which results in 15-fold increase in stiffness. Molecular dynamics (MD) simulations are used to understand the interaction between silane functional groups (3-aminopropyl triethoxysilane) and SiO2 nanoparticles thus confirming the reinforcement capability of GO. In addition, the material is stable under high temperature and offers a cost-effective alternative to both fire-retardant and oil absorption materials.

8.
ACS Appl Mater Interfaces ; 9(15): 13742-13750, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28350452

RESUMO

The most recent and innovative silicon carbide (SiC) fiber ceramic matrix composites, used for lightweight high-heat engine parts in aerospace applications, are woven, layered, and then surrounded by a SiC ceramic matrix composite (CMC). To further improve both the mechanical properties and thermal and oxidative resistance abilities of this material, SiC nanotubes and nanowires (SiCNT/NWs) are grown on the surface of the SiC fiber via carbon nanotube conversion. This conversion utilizes the shape memory synthesis (SMS) method, starting with carbon nanotube (CNT) growth on the SiC fiber surface, to capitalize on the ease of dense surface morphology optimization and the ability to effectively engineer the CNT-SiC fiber interface to create a secure nanotube-fiber attachment. Then, by converting the CNTs to SiCNT/NWs, the relative morphology, advantageous mechanical properties, and secure connection of the initial CNT-SiC fiber architecture are retained, with the addition of high temperature and oxidation resistance. The resultant SiCNT/NW-SiC fiber can be used inside the SiC ceramic matrix composite for a high-heat turbo engine part with longer fatigue life and higher temperature resistance. The differing sides of the woven SiCNT/NWs act as the "hook and loop" mechanism of Velcro but in much smaller scale.

9.
ACS Nano ; 11(9): 8944-8952, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28771311

RESUMO

Weak van der Waals forces between inert hexagonal boron nitride (h-BN) nanosheets make it easy for them to slide over each other, resulting in an unstable structure in macroscopic dimensions. Creating interconnections between these inert nanosheets can remarkably enhance their mechanical properties. However, controlled design of such interconnections remains a fundamental problem for many applications of h-BN foams. In this work, a scalable in situ freeze-drying synthesis of low-density, lightweight 3D macroscopic structures made of h-BN nanosheets chemically connected by poly(vinyl alcohol) (PVA) molecules via chemical cross-link is demonstrated. Unlike pristine h-BN foam which disintegrates upon handling after freeze-drying, h-BN/PVA foams exhibit stable mechanical integrity in addition to high porosity and large surface area. Fully atomistic simulations are used to understand the interactions between h-BN nanosheets and PVA molecules. In addition, the h-BN/PVA foam is investigated as a possible CO2 absorption and as laser irradiation protection material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA