Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38558156

RESUMO

Metastasis is a major contributor to treatment failure and death in urological cancers, representing an important biomedical challenge at present. Metastases form as a result of cancer cells leaving the primary site, entering the vasculature and lymphatic vessels, and colonizing clones elsewhere in the body. However, the specific regulatory mechanisms of action underlying the metastatic process of urological cancers remain incompletely elucidated. With the deepening of research, circular RNAs (circRNAs) have been found to not only play a significant role in tumor progression and prognosis but also show aberrant expression in various tumor metastases, consequently impacting tumor metastasis through multiple pathways. Therefore, circRNAs are emerging as potential tumor markers and treatment targets. This review summarizes the research progress on elucidating how circRNAs regulate the urological cancer invasion-metastasis cascade response and related processes, as well as their role in immune microenvironment remodeling and circRNA vaccines. This body of work highlights circRNA regulation as an emerging therapeutic target for urological cancers, which should motivate further specific research in this regard.

2.
Nat Mater ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026087

RESUMO

Iron-based 1111-type superconductors display high critical temperatures and relatively high critical current densities Jc. The typical approach to increasing Jc is to introduce defects to control dissipative vortex motion. However, when optimized, this approach is theoretically predicted to be limited to achieving a maximum Jc of only ∼30% of the depairing current density Jd, which depends on the coherence length and the penetration depth. Here we dramatically boost Jc in SmFeAsO1-xHx films using a thermodynamic approach aimed at increasing Jd and incorporating vortex pinning centres. Specifically, we reduce the penetration depth, coherence length and critical field anisotropy by increasing the carrier density through high electron doping using H substitution. Remarkably, the quadrupled Jd reaches 415 MA cm-2, a value comparable to cuprates. Finally, by introducing defects using proton irradiation, we obtain high Jc values in fields up to 25 T. We apply this method to other iron-based superconductors and achieve a similar enhancement of current densities.

3.
Biochem Biophys Res Commun ; 518(2): 311-318, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31427086

RESUMO

TAp63 is an isoform of p63 gene, a p53 family gene that suppresses tumorigenesis via transcriptional regulation. TAp63 represses transcription of MYC oncogene in glioblastomas; however, its role in another MYC family gene, MYCN, has remained elusive. In this study, we showed that TAp63 repressed transcription of the MYCN gene in human cancer cells. Overexpression of TAp63 in HeLa cells suppressed MYCN expression, whereas knockdown of TAp63 had the opposite effect. By binding to exon 1 of MYCN gene, TAp63 suppressed the promoter activities of MYCN and its cis-antisense gene, NCYM. Other p53 family members, p53 and TAp73, showed lesser ability to suppress MYCN/NCYM promoter activities compared with that of TAp63. All-trans-retinoic acid (ATRA) treatment of MYCN/NCYM-amplified neuroblastoma CHP134 cells induced TAp63 and reduced p53 expressions, accompanied by downregulation of MYCN/NCYM expressions. Meanwhile, TAp63 knockdown inhibited ATRA-induced repression of NCYM gene expression. Blocking the p53 family binding sites by CRISPR-dCas9 system in CHP134 cells induced MYCN/NCYM expression and promoted apoptotic cell death. Expression levels of TAp63 mRNA inversely correlated with those of MYCN/NCYM expression in primary neuroblastomas, which was associated with a favorable prognosis. Collectively, TAp63 repressed MYCN/NCYM bidirectional transcription, contributing to the suppression of neuroblastoma growth.


Assuntos
Proteína Proto-Oncogênica N-Myc/genética , Proteínas de Neoplasias/genética , Neuroblastoma/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Proliferação de Células/genética , Humanos , Neuroblastoma/metabolismo , Neuroblastoma/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Proteínas Supressoras de Tumor/metabolismo
4.
Mol Carcinog ; 58(7): 1134-1144, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30859632

RESUMO

KIF1Bß, a member of the kinesin superfamily of motor proteins, is a haploinsufficient tumor suppressor mapped to chromosome 1p36.2, which is frequently deleted in neural crest-derived tumors, including neuroblastoma and pheochromocytoma. While KIF1Bß acts downstream of the nerve growth factor (NGF) pathway to induce apoptosis, further molecular functions of this gene product have largely been unexplored. In this study, we report that KIF1Bß destabilizes the morphological structure of mitochondria, which is critical for cell survival and apoptosis. We identified YME1L1, a mitochondrial metalloprotease responsible for the cleavage of the mitochondrial GTPase OPA1, as a physical interacting partner of KIF1Bß. KIF1Bß interacted with YME1L1 through its death-inducing region, as initiated the protease activity of YME1L1 to cleave the long forms of OPA1, resulting in mitochondrial fragmentation. Overexpression of YME1L1 promoted apoptosis, while knockdown of YME1L1 promoted cell growth. High YME1L1 expression was significantly associated with a better prognosis in neuroblastoma. Furthermore, in NGF-deprived PC12 cells, KIF1Bß and YME1L1 were upregulated, accompanied by mitochondrial fragmentation and apoptotic cell death. Small interfering RNA-mediated knockdown of either protein alone, however, remarkably inhibited the NGF depletion-induced apoptosis. Our findings indicate that tumor suppressor KIF1Bß plays an important role in intrinsic mitochondria-mediated apoptosis through the regulation of structural and functional dynamics of mitochondria in collaboration with YME1L1. Dysfunction of the KIF1Bß/YME1L1/OPA1 mechanism may be involved in malignant biological features of neural crest-derived tumors as well as the initiation and progression of neurodegenerative diseases.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Apoptose/fisiologia , Cinesinas/metabolismo , Metaloendopeptidases/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Neuroblastoma/patologia , ATPases Associadas a Diversas Atividades Celulares/genética , Neoplasias das Glândulas Suprarrenais/patologia , Linhagem Celular Tumoral , GTP Fosfo-Hidrolases/metabolismo , Genes Supressores de Tumor , Células HeLa , Humanos , Cinesinas/genética , Metaloendopeptidases/genética , Proteínas Mitocondriais/genética , Neuroblastoma/mortalidade , Feocromocitoma/patologia , Interferência de RNA , RNA Interferente Pequeno/genética
5.
BMC Cancer ; 18(1): 309, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29558908

RESUMO

BACKGROUND: Despite the remarkable advances in the early diagnosis and treatment, overall 5-year survival rate of patients with pancreatic cancer is less than 10%. Gemcitabine (GEM), a cytidine nucleoside analogue and ribonucleotide reductase inhibitor, is a primary option for patients with advanced pancreatic cancer; however, its clinical efficacy is extremely limited. This unfavorable clinical outcome of pancreatic cancer patients is at least in part attributable to their poor response to anti-cancer drugs such as GEM. Thus, it is urgent to understand the precise molecular basis behind the drug-resistant property of pancreatic cancer and also to develop a novel strategy to overcome this deadly disease. REVIEW: Accumulating evidence strongly suggests that p53 mutations contribute to the acquisition and/or maintenance of drug-resistant property of pancreatic cancer. Indeed, certain p53 mutants render pancreatic cancer cells much more resistant to GEM, implying that p53 mutation is one of the critical determinants of GEM sensitivity. Intriguingly, runt-related transcription factor 2 (RUNX2) is expressed at higher level in numerous human cancers such as pancreatic cancer and osteosarcoma, indicating that, in addition to its pro-osteogenic role, RUNX2 has a pro-oncogenic potential. Moreover, a growing body of evidence implies that a variety of miRNAs suppress malignant phenotypes of pancreatic cancer cells including drug resistance through the down-regulation of RUNX2. Recently, we have found for the first time that forced depletion of RUNX2 significantly increases GEM sensitivity of p53-null as well as p53-mutated pancreatic cancer cells through the stimulation of p53 family TAp63/TAp73-dependent cell death pathway. CONCLUSIONS: Together, it is likely that RUNX2 is one of the promising molecular targets for the treatment of the patients with pancreatic cancer regardless of their p53 status. In this review article, we will discuss how to overcome the serious drug-resistant phenotype of pancreatic cancer.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Mutação , Neoplasias Pancreáticas/patologia , Proteína Supressora de Tumor p53/genética , Antimetabólitos Antineoplásicos/farmacologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Desoxicitidina/farmacologia , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Prognóstico , Gencitabina
6.
Bioorg Med Chem ; 26(9): 2337-2344, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29622411

RESUMO

To examine the hydrophobic structure of PI polyamides on tumor accumulation in vivo, PI polyamide-fluorescein conjugates 1-5 with the distinct number of N-methylimidazole (Im) units were synthesized. There existed an inverse relationship between the Im unit number of the compounds and their hydrophobicity. Compound 1 with one Im unit and 3 with three Im units accumulated and retained preferentially in tumor tissues compared to 5 with five Im units. These results suggest the importance of a PI polyamide's primary structure, which partly contributes to its hydrophobic property, on its accumulation and/or retention in tumor tissues in vivo.


Assuntos
Imidazóis/metabolismo , Neoplasias/metabolismo , Nylons/metabolismo , Pirróis/metabolismo , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Feminino , Fluoresceínas/síntese química , Fluoresceínas/química , Fluoresceínas/metabolismo , Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imidazóis/síntese química , Imidazóis/química , Camundongos Endogâmicos BALB C , Estrutura Molecular , Nylons/síntese química , Nylons/química , Pirróis/síntese química , Pirróis/química , Distribuição Tecidual
7.
Biochim Biophys Acta ; 1849(9): 1133-44, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26162986

RESUMO

Head-to-head gene pairs represent a unique feature of gene organization in eukaryotes, accounting for >10% of genes in the human genome. Identification and functional analysis of such gene pairs is only in its infancy. Recently, we identified PRR11 as a novel cancer-related gene that is implicated in cell cycle and lung cancer. Here we demonstrate that PRR11 is oriented in a head-to-head configuration with its neighboring gene, SKA2. 5'-RACE assay revealed that the intergenic spacer region between the two genes is <500 bp. Serial luciferase reporter assays demonstrated that a minimal 80-bp intergenic region functions as a core bidirectional promoter to drive basal transcription in both the PRR11 and SKA2 orientations. EMSA and ChIP assays demonstrated that NF-Y binds to and directly transactivates the PRR11-SKA2 bidirectional promoter. SiRNA-mediated NF-Y depletion significantly downregulated PRR11 and SKA2 expression. Expression of both PRR11 and SKA2 was significantly upregulated in lung cancer. Expression of the two genes was highly correlated with each other and with NF-Y expression. Remarkably, high expression of both PRR11 and SKA2 was associated with poorer prognosis in lung cancer patients compared with high expression of one gene or low expression of both genes. Knockdown of PRR11 and/or SKA2 remarkably reduced cell proliferation, migration, and invasion in lung cancer cells. Thus, the PRR11-SKA2 bidirectional transcription unit, which is a novel direct target of NF-Y, is essential for the accelerated proliferation and motility of lung cancer cells and may represent a potential target in the diagnosis and/or treatment of human lung cancer.


Assuntos
Fator de Ligação a CCAAT/fisiologia , Proteínas Cromossômicas não Histona/genética , Regulação da Expressão Gênica , Neoplasias Pulmonares/genética , Regiões Promotoras Genéticas , Proteínas/genética , Animais , Sequência de Bases , Linhagem Celular Tumoral , Cromatina/genética , DNA/genética , Humanos , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica
8.
Biochem Biophys Res Commun ; 478(1): 81-86, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27453342

RESUMO

BCH motif-containing molecule at the carboxyl terminal region 1 (BMCC1)/PRUNE2 is highly expressed in patients with favorable neuroblastoma (NB), encoding a multifunctional scaffold protein that modulates several signaling networks including RhoA and AKT pathways. Accumulating evidence suggests that BMCC1 acts as a tumor-suppressor. In this study, we addressed molecular mechanism underlying transcriptional regulation of BMCC1 in NBs. We found that transcription factor E2F1 was recruited to E2F-binding site in the promoter region of BMCC1 gene. Indeed, overexpression of E2F1 resulted in an increase in the expression level of BMCC1 in NB cell lines. On the other hand, knockdown of E2F1 in NB cells yielded down-regulation of BMCC1. Also, we showed that BMCC1 and E2F1 were simultaneously induced at G1 to S phase transition. Therefore, we conclude that E2F1 directly facilitated BMCC1 transcription. Taking together, these results suggest that BMCC1 induced by E2F1 acts as a tumor suppressor through its pro-apoptotic function, resulted in favorable prognosis of NB.


Assuntos
Fator de Transcrição E2F1/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/genética , Neuroblastoma/genética , Ciclo Celular , Linhagem Celular Tumoral , Fator de Transcrição E2F1/genética , Humanos , Proteínas de Neoplasias/metabolismo , Neuroblastoma/diagnóstico , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Prognóstico , Regiões Promotoras Genéticas , Ativação Transcricional
9.
Biochem Biophys Res Commun ; 458(3): 501-508, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25666944

RESUMO

Recently, we have demonstrated that proline-rich protein 11 (PRR11) is a novel tumor-related gene product likely implicated in the regulation of cell cycle progression as well as lung cancer development. However, its precise role in cell cycle progression remains unclear. In the present study, we have further investigated the expression pattern and functional implication of PRR11 during cell cycle in detail in human lung carcinoma-derived H1299 cells. According to our immunofluorescence study, PRR11 was expressed largely in cytoplasm, the amount of PRR11 started to increase in the late S phase, and was retained until just before mitotic telophase. Consistent with those observations, siRNA-mediated knockdown of PRR11 caused a significant cell cycle arrest in the late S phase. Intriguingly, the treatment with dNTPs further augmented PRR11 silencing-mediated S phase arrest. Moreover, knockdown of PRR11 also resulted in a remarkable retardation of G2/M progression, and PRR11-knockdown cells subsequently underwent G2 phase cell cycle arrest accompanied by obvious mitotic defects such as multipolar spindles and multiple nuclei. In addition, forced expression of PRR11 promoted the premature Chromatin condensation (PCC), and then proliferation of PRR11-expressing cells was massively attenuated and induced apoptosis. Taken together, our current observations strongly suggest that PRR11, which is strictly regulated during cell cycle progression, plays a pivotal role in the regulation of accurate cell cycle progression through the late S phase to mitosis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Ciclo Celular , Cromatina/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Divisão Celular , Linhagem Celular Tumoral , Proliferação de Células , Cromatina/patologia , Fase G2 , Regulação Neoplásica da Expressão Gênica , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas/genética , Interferência de RNA , Fase S , Regulação para Cima
10.
Mamm Genome ; 26(11-12): 591-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26248577

RESUMO

Gene amplified in squamous cell carcinoma (SCC) 1 (GASC1), also known as KDM4C/JMJD2C, encodes a histone demethylase that specifically demethylates lysine residues (H3K9, H3K36, and H1.4K26) and plays a crucial role in the regulation of gene expression as well as in heterochromatin formation. GASC1 is located at human chromosome 9p23-24, where frequent genomic amplification is observed in human esophageal cancer, and its aberrant expression is detected in a variety of human cancers, such as breast, colon, and prostate. Therefore, it is highly likely that GASC1 contributes to the genesis and/or development of cancer. However, there is a lack of direct evidence of GASC1 having an oncogenic function. In this study, we aimed to clarify the role of GASC1 in the skin SCC carcinogenesis. For this purpose, we generated Gasc1-heterozygous mice (Gasc1+/-) with reduced expression of Gasc1. On the basis of our results, Gasc1+/- mice displayed a significantly lower incidence and multiplicity of both benign and malignant tumors induced by the two-stage skin carcinogenesis protocol than wild-type mice. In addition, the volume of carcinoma was significantly lower in Gasc1+/- mice. Consistent with these observations, knocking down of Gasc1 resulted in reduced cell viability of SCC cells in vitro. Our findings clearly demonstrated that GASC1 has an oncogenic role in skin carcinogenesis.


Assuntos
Histona Desmetilases com o Domínio Jumonji/genética , Papiloma/genética , Neoplasias Cutâneas/genética , 9,10-Dimetil-1,2-benzantraceno , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oncogenes , Papiloma/induzido quimicamente , Papiloma/patologia , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/patologia , Carga Tumoral
11.
J Biol Chem ; 288(2): 1353-64, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23148227

RESUMO

Representative tumor suppressor p53 plays a critical role in the regulation of proper DNA damage response. In this study, we have found for the first time that Runt-related transcription factor 1 (RUNX1) contributes to p53-dependent DNA damage response. Upon adriamycin (ADR) exposure, p53 as well as RUNX1 were strongly induced in p53-proficient HCT116 and U2OS cells, which were closely associated with significant transactivation of p53 target genes, such as p21(WAF)(1), BAX, NOXA, and PUMA. RUNX1 was exclusively expressed in the cell nucleus and formed a complex with p53 in response to ADR. Chromatin immunoprecipitation assay demonstrated that p53 together with RUNX1 are efficiently recruited onto p53 target gene promoters following ADR exposure, indicating that RUNX1 is involved in p53-mediated transcriptional regulation. Indeed, forced expression of RUNX1 stimulated the transcriptional activity of p53 in response to ADR. Consistent with these observations, knockdown of RUNX1 attenuated ADR-mediated induction of p53 target genes and suppressed ADR-dependent apoptosis. Furthermore, RUNX1 was associated with p300 histone acetyltransferase, and ADR-dependent acetylation of p53 at Lys-373/382 was markedly inhibited in RUNX1 knockdown cells. In addition, knockdown of RUNX1 resulted in a significant decrease in the amount of p53-p300 complex following ADR exposure. Taken together, our present results strongly suggest that RUNX1 is required for the stimulation of p53 in response to DNA damage and also provide novel insight into understanding the molecular mechanisms behind p53-dependent DNA damage response.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Dano ao DNA , Proteína Supressora de Tumor p53/fisiologia , Acetilação , Sequência de Bases , Western Blotting , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Primers do DNA , Doxorrubicina/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Proteína Supressora de Tumor p53/genética
12.
Biochem Biophys Res Commun ; 453(1): 86-93, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25256744

RESUMO

We have previously identified neuronal leucine-rich repeat protein-3 (NLRR3) gene which is preferentially expressed in favorable human neuroblastomas as compared with unfavorable ones. In this study, we have found for the first time that NLRR3 is proteolytically processed by secretases and its intracellular domain (NLRR3-ICD) is then released to translocate into cell nucleus during ATRA-mediated neuroblastoma differentiation. According to our present observations, NLRR3-ICD was induced to accumulate in cell nucleus of neuroblastoma SH-SY5Y cells following ATRA treatment. Since the proteolytic cleavage of NLRR3 was blocked by α- or γ-secretase inhibitor, it is likely that NLRR3-ICD is produced through the secretase-mediated processing of NLRR3. Intriguingly, forced expression of NLRR3-ICD in neuroblastoma SK-N-BE cells significantly suppressed their proliferation as examined by a live-cell imaging system and colony formation assay. Similar results were also obtained in neuroblastoma TGW cells. Furthermore, overexpression of NLRR3-ICD stimulated ATRA-dependent neurite elongation in SK-N-BE cells. Together, our present results strongly suggest that NLRR3-ICD produced by the secretase-mediated proteolytic processing of NLRR3 plays a crucial role in ATRA-mediated neuronal differentiation, and provide a clue to develop a novel therapeutic strategy against aggressive neuroblastomas.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Tretinoína/farmacologia , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Humanos , Glicoproteínas de Membrana , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Neuroblastoma/patologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Proteólise , Ensaio Tumoral de Célula-Tronco
13.
Phytomedicine ; 126: 155426, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367425

RESUMO

BACKGROUND: Hexokinase I (HK1) is highly expressed in a variety of malignancies, regulates glycolytic pathway in cancer cells, and thus considered to be one of the promising molecular targets for cancer therapy. Nonetheless, the development of a specific inhibitor against HK1 remains elusive. PURPOSE: This study aims to elucidate the mechanism by which oridonin inhibits the proliferation and immune evasion of bladder cancer cells, specifically through the suppression of HK1. METHODS: To examine the mechanisms by which oridonin directly binds to cysteines of HK1 and inhibits bladder cancer growth, this study utilized a variety of methods. These included the Human Proteome Microarray, Streptavidin-agarose affinity assay, Biolayer Interferometry (BLI) ainding analysis, Mass Spectrometry, Cellular Thermal Shift Assay, Extracellular Acidification Rate measurement, and Xenotransplant mouse models. RESULTS: As indicated by our current findings, oridonin forms a covalent bond with Cys-813, located adjacently to glucose-binding domain of HK1. This suppresses the enzymatic activity of HK1, leading to an effective reduction of glycolysis, which triggers cell death via apoptosis in cells derived from human bladder cancer. Significantly, oridonin also inhibits lactate-induced PD-L1 expression in bladder cancer. Furthermore, pairing oridonin with a PD-L1 inhibitor amplifies the cytotoxicity of CD8+ T cells against bladder cancer. CONCLUSION: This research strongly suggests that oridonin serves as a covalent inhibitor of HK1. Moreover, it indicates that functional cysteine residue of HK1 could operate as viable targets for selective inhibition. Consequently, oridonin exhibits substantial potential for the evolution of anti-cancer agents targeting the potential therapeutic target HK1 via metabolism immunomodulation.


Assuntos
Antineoplásicos , Diterpenos do Tipo Caurano , Neoplasias da Bexiga Urinária , Animais , Camundongos , Humanos , Linhagem Celular Tumoral , Neoplasias da Bexiga Urinária/tratamento farmacológico , Diterpenos do Tipo Caurano/farmacologia , Diterpenos do Tipo Caurano/química , Antineoplásicos/farmacologia , Proliferação de Células , Apoptose
14.
Biochem Biophys Res Commun ; 430(3): 1034-9, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23261415

RESUMO

Tumor suppressor p53 plays a critical role in the regulation of DNA damage response. Upon severe DNA damage, p53 promotes apoptosis to eliminate cells with seriously damaged DNA to maintain genomic integrity. Pro-apoptotic function of p53 is tightly linked to its sequence-specific transactivation ability. In the present study, we have identified co-chaperon DnaJC7/TPR2 as a novel binding partner of p53 by yeast-based two-hybrid screening. In the two-hybrid screening, we used the central DNA-binding domain of p53 as a bait. Co-immunoprecipitation experiments demonstrated that DnaJC7 is associated with p53 in mammalian cells. Luciferase reporter and colony formation assays revealed that DnaJC7 enhances p53-dependent transcriptional as well as growth-suppressive activity. Forced expression of DnaJC7 induced to extend a half-life of p53, indicating that DnaJC7-mediated activation of p53 might be at least in part due to its prolonged half-life. Consistent with these observations, the amount of p53/MDM2 complex was markedly reduced in the presence of DnaJC7, suggesting that DnaJC7 dissociates MDM2 from p53. Taken together, our present findings strongly suggest that DnaJC7 participates in p53/MDM2 negative feedback regulatory pathway, and thereby enhancing the stability and activity of p53.


Assuntos
Proteínas de Choque Térmico HSP40/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Meia-Vida , Proteínas de Choque Térmico , Humanos , Chaperonas Moleculares , Estabilidade Proteica , Transcrição Gênica , Proteína Supressora de Tumor p53/genética , Técnicas do Sistema de Duplo-Híbrido
15.
J Exp Clin Cancer Res ; 42(1): 72, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36973704

RESUMO

BACKGROUND: Although the aberrant activation of NOTCH1 pathway causes a malignant progression of renal cell carcinoma (RCC), the precise molecular mechanisms behind the potential action of pro-oncogenic NOTCH1/HES1 axis remain elusive. Here, we examined the role of tumor suppressive miR-138-2 in the regulation of NOTCH1-HES1-mediated promotion of RCC. METHODS: This study employed bioinformatics, xenotransplant mouse models, ChIP assay, luciferase reporter assay, functional experiments, real-time PCR and Western blot analysis to explore the mechanisms of miR-138-2 in the regulation of NOTCH1-HES1-mediated promotion of RCC, and further explored miR-138-2-containing combination treatment strategies. RESULTS: There existed a positive correlation between down-regulation of miR-138 and the aberrant augmentation of NOTCH1/HES1 regulatory axis. Mechanistically, HES1 directly bound to miR-138-2 promoter region and thereby attenuated the transcription of miR-138-5p as well as miR-138-2-3p. Further analysis revealed that miR-138-5p as well as miR-138-2-3p synergistically impairs pro-oncogenic NOTCH1 pathway through the direct targeting of APH1A, MAML1 and NOTCH1. CONCLUSIONS: Collectively, our current study strongly suggests that miR-138-2 acts as a novel epigenetic regulator of pro-oncogenic NOTCH1 pathway, and that the potential feedback regulatory loop composed of HES1, miR-138-2 and NOTCH1 contributes to the malignant development of RCC. From the clinical point of view, this feedback regulatory loop might be a promising therapeutic target to treat the patients with RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , Animais , Humanos , Camundongos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo
16.
Biochem Biophys Res Commun ; 421(1): 57-63, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22480684

RESUMO

Appropriate regulation of DNA damage response is pivotal for maintaining genome stability. p53 as well as E2F-1 plays a critical role during DNA damage response, however, the physiological significance of their interaction has been elusive. In the present study, we found that E2F-1 has an inhibitory effect on p53 during adriamycin (ADR)-mediated DNA damage response. Upon ADR exposure, p53 and E2F-1 were markedly induced at protein and mRNA levels in p53-procifient U2OS and HCT116 cells, and formed a stable complex as examined by co-immunoprecipitation experiments. Of note, chromatin immunoprecipitation (ChIP) experiments revealed that ADR-mediated induction coincides with the efficient recruitment of p53 and E2F-1 onto the promoters of p53-target genes, such as p21(WAF1) and BAX. Subsequent RT-PCR and luciferase reporter assays demonstrated that E2F-1 strongly attenuates p53-dependent transactivation of p53-target genes. Importantly, siRNA-mediated knockdown of E2F-1 stimulated apoptosis in response to ADR, which was associated with an accelerated response of p21(WAF1) and BAX. Collectively, our present findings suggest that E2F-1 participates in p53-mediated DNA damage response and might have a checkpoint function to limit overactive p53.


Assuntos
Apoptose/genética , Dano ao DNA/genética , Fator de Transcrição E2F1/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Doxorrubicina/farmacologia , Fator de Transcrição E2F1/genética , Técnicas de Silenciamento de Genes , Humanos , RNA Interferente Pequeno/genética , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo
17.
Molecules ; 17(5): 4851-9, 2012 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-22538488

RESUMO

We synthesized superconducting fullerene nanowhiskers (C(60)NWs) by potassium (K) intercalation. They showed large superconducting volume fractions, as high as 80%. The superconducting transition temperature at 17 K was independent of the K content (x) in the range between 1.6 and 6.0 in K-doped C(60) nanowhiskers (K(x)C(60)NWs), while the superconducting volume fractions changed with x. The highest shielding fraction of a full shielding volume was observed in the material of K(3.3)C(60)NW by heating at 200 °C. On the other hand, that of a K-doped fullerene (K-C(60)) crystal was less than 1%. We report the superconducting behaviors of our newly synthesized K(x)C(60)NWs in comparison to those of K(x)C(60) crystals, which show superconductivity at 19 K in K(3)C(60). The lattice structures are also discussed, based on the x-ray diffraction (XRD) analyses.


Assuntos
Fulerenos/química , Nanoestruturas/química , Cristalização , Cristalografia por Raios X , Condutividade Elétrica , Microscopia Eletrônica de Varredura , Nanoestruturas/ultraestrutura , Potássio/química , Temperatura
18.
J Biol Chem ; 285(22): 16693-703, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20353948

RESUMO

Although it has been shown that the gastric tumor suppressor RUNX3 has a growth inhibitory activity, the precise molecular mechanisms behind RUNX3-mediated tumor suppression remained unclear. In this study, we found that RUNX3 is closely involved in DNA damage-dependent phosphorylation of tumor suppressor p53 at Ser-15 and acts as a co-activator for p53. The small interference RNA-mediated knockdown of RUNX3 inhibited adriamycin (ADR)-dependent apoptosis in p53-proficient cells but not in p53-deficient cells in association with a significant reduction of p53-target gene expression as well as phosphorylation of p53 at Ser-15. In response to ADR, RUNX3 was induced to accumulate in the cell nucleus and co-localized with p53. Immunoprecipitation experiments demonstrated that RUNX3 forms a complex with p53 in cells. In vitro pulldown assays revealed that the COOH-terminal portion of p53 is required for the interaction with RUNX3. Forced expression of RUNX3 enhanced p53-mediated transcriptional activation. Additionally, RUNX3 had an ability to induce the phosphorylation of p53 at Ser-15, thereby promoting p53-dependent apoptosis. Intriguingly, RUNX3 interacted with phosphorylated forms of ataxia telangiectasia-mutated in response to ADR; however, it did not affect the extent of DNA damage. From the clinical point of view, coordinated p53 mutation and decreased expression of RUNX3 in 105 human lung adenocarcinomas were significantly associated with the poor outcome of patients (p = 0.0203). Thus, our present results strongly suggest that RUNX3 acts as a novel co-activator for p53 through regulating its DNA damage-induced phosphorylation at Ser-15 and also provide a clue to understanding the molecular mechanisms underlying RUNX3-mediated tumor suppression.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Dano ao DNA , Regulação Neoplásica da Expressão Gênica , Serina/química , Proteína Supressora de Tumor p53/metabolismo , Adenocarcinoma/diagnóstico , Adenocarcinoma/metabolismo , Apoptose , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Modelos Biológicos , Mutação , Fosforilação , Prognóstico , Frações Subcelulares/metabolismo
19.
Biochem Biophys Res Commun ; 406(1): 79-84, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21295542

RESUMO

Recently, we have described that CREB (cAMP-responsive element-binding protein) has the ability to transactivate tumor suppressor p53 gene in response to glucose deprivation. In this study, we have found that CREB forms a complex with p53 and represses p53-mediated transactivation of MDM2 but not of p21(WAF1). Immunoprecipitation analysis revealed that CREB interacts with p53 in response to glucose deprivation. Forced expression of CREB significantly attenuated the up-regulation of the endogenous MDM2 in response to p53. By contrast, the mutant form of CREB lacking DNA-binding domain (CREBΔ) had an undetectable effect on the expression level of the endogenous MDM2. During the glucose deprivation-mediated apoptosis, there existed an inverse relationship between the expression levels of MDM2 and p53/CREB. Additionally, p53/CREB complex was dissociated from MDM2 promoter in response to glucose deprivation. Collectively, our present results suggest that CREB preferentially down-regulates MDM2 and thereby contributing to p53-mediated apoptosis in response to glucose deprivation.


Assuntos
Apoptose , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Glucose/deficiência , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/genética , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , Estrutura Terciária de Proteína/genética , Proteína Supressora de Tumor p53/genética
20.
J Biomed Biotechnol ; 2011: 603925, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21188172

RESUMO

p53 is one of the most studied tumor suppressors in the cancer research field. Of note, over 50% of human tumors carry loss of function mutations, and thus p53 has been considered to be a classical Knudson-type tumor suppressor. From the functional point of view, p53 is a nuclear transcription factor to transactivate a variety of its target genes implicated in the induction of cell cycle arrest, DNA repair, and apoptotic cell death. In response to cellular stresses such as DNA damage, p53 is activated and promotes cell cycle arrest followed by the replacement of DNA lesions and/or apoptotic cell death. Therefore, p53 is able to maintain the genomic integrity to prevent the accumulation of genetic alterations, and thus stands at a crossroad between cell survival and cell death. In this paper, we describe a variety of molecular mechanisms behind the regulation of p53.


Assuntos
Genes p53 , Neoplasias/genética , Proteína Supressora de Tumor p53/genética , Animais , Humanos , Camundongos , Mutação , Neoplasias/metabolismo , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA