Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Curr Genet ; 70(1): 8, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913087

RESUMO

The Byr2 kinase of fission yeast Schizosaccharomyces pombe is recruited to the membrane with the assistance of Ras1. Byr2 is also negatively regulated by 14-3-3 proteins encoded by rad24 and rad25. We conducted domain and mutational analysis of Byr2 to determine which region is critical for its binding to 14-3-3 proteins. Rad24 and Rad25 bound to both the Ras interaction domain in the N-terminus and to the C-terminal catalytic domain of Byr2. When amino acid residues S87 and T94 of the Ras-interacting domain of Byr2 were mutated to alanine, Rad24 could no longer bind to Byr2. S402, S566, S650, and S654 mutations in the C-terminal domain of Byr2 also abolished its interaction with Rad24 and Rad25. More than three mutations in the C-terminal domain were required to abolish completely its interaction with 14-3-3 protein, suggesting that multiple residues are involved in this interaction. Expression of the N-terminal domain of Byr2 in wild-type cells lowered the mating ratio, because it likely blocked the interaction of Byr2 with Ste4 and Ras1, whereas expression of the catalytic domain of Byr2 increased the mating ratio as a result of freeing from intramolecular regulation by the N-terminal domain of Byr2. The S87A and T94A mutations of Byr2 increased the mating ratio and attenuated inhibition of Byr2 by Rad24; therefore, these two amino acids are critical for its regulation by Rad24. S566 of Byr2 is critical for activity of Byr2 but not for its interaction with 14-3-3 proteins. In this study, we show that 14-3-3 proteins interact with two separate domains in Byr2 as negative regulators.


Assuntos
Proteínas 14-3-3 , Ligação Proteica , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Mutação , Análise Mutacional de DNA , Domínios Proteicos/genética , Domínios e Motivos de Interação entre Proteínas , Proteínas de Ciclo Celular , Peptídeos e Proteínas de Sinalização Intracelular
2.
Pestic Biochem Physiol ; 199: 105776, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458683

RESUMO

γ-Aminobutyric acid receptors (GABARs) are crucial targets for pest control chemicals, including meta-diamide and isoxazoline insecticides, which act as negative allosteric modulators of insect GABARs. Previous cell-based assays have indicated that amino acid residues in the transmembrane cavity between adjacent subunits of Drosophila RDL GABAR (i.e., Ile276, Leu280, and Gly335) are involved in mediating the action of meta-diamides. In this study, to confirm this result at the organismal level, we employed CRISPR/Cas9-mediated genome editing, generated six transgenic Drosophila strains carrying substitutions in these amino acid residues, and investigated their sensitivity to broflanilide and isocycloseram. Flies homozygous for the I276F mutation did not exhibit any change in sensitivity to the tested insecticides compared to the control flies. Conversely, I276C homozygosity was lethal, and heterozygous flies exhibited ∼2-fold lower sensitivity to broflanilide than the control flies. Flies homozygous for the L280C mutation survived into adulthood but exhibited infertility. Both heterozygous and homozygous L280C flies exhibited ∼3- and âˆ¼20-fold lower sensitivities to broflanilide and isocycloseram, respectively, than the control flies. The reduction in sensitivity to isocycloseram in L280C flies diminished to ∼3-fold when treated with piperonyl butoxide. Flies homozygous for the G335A mutation reached the adult stage. However, they were sterile, had small bodies, and exhibited reduced locomotion, indicating the critical role of Gly335 in RDL function. These flies exhibited markedly increased tolerance to topically applied broflanilide and isocycloseram, demonstrating that the conserved Gly335 is the target of the insecticidal actions of broflanilide and isocycloseram. Considering the significant fitness costs, the Gly335 mutation may not pose a serious risk for the development of resistance in field populations of insect pests. However, more careful studies using insect pests are needed to investigate whether our perspective applies to resistance development under field conditions.


Assuntos
Benzamidas , Proteínas de Drosophila , Fluorocarbonos , Inseticidas , Animais , Receptores de GABA/genética , Receptores de GABA/metabolismo , Drosophila/genética , Drosophila/metabolismo , Inseticidas/farmacologia , Inseticidas/química , Glicina/farmacologia , Mutagênese , Resistência a Inseticidas/genética , Receptores de GABA-A/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
3.
Pestic Biochem Physiol ; 191: 105378, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36963946

RESUMO

Dinotefuran, a neonicotinoid, is a unique insecticide owing to its structure and action. We took two approaches that employed insects with controlled expression of nicotinic acetylcholine receptor (nAChR)-encoding genes to gain insight into the uniqueness of dinotefuran. First, we examined the insecticidal activity of dinotefuran and imidacloprid against brown planthoppers (Nilaparvata lugens), in which the expression of eight (of 13) individual subunit-encoding genes was specifically reduced using RNA interference. Knockdown of the tested gene, except one, resulted in a decrease in sensitivity to imidacloprid, whereas the sensitivity of N. lugens to dinotefuran decreased only when two of the eight genes were knocked down. These findings imply that a major dinotefuran-targeted nAChR subtype may contain specific subunits although imidacloprid acts on a broad range of receptor subtypes. Next, we examined the effects of knockout of Drosophila α1 subunit-encoding gene (Dα1) on the insecticidal effects of dinotefuran and imidacloprid. Dα1-deficient flies (Dα1KO) demonstrated the same sensitivity to dinotefuran as control flies, but a decreased sensitivity to imidacloprid. This difference was attributed to a reduction in imidacloprid-binding sites in Dα1KO flies, whereas the binding of dinotefuran remained unchanged. RNA sequencing analysis indicated that Dα2 expression was specifically enhanced in Dα1KO flies. These findings suggest that changes in Dα1 and Dα2 expression contribute to the differences in the insecticidal activity of dinotefuran and imidacloprid in Dα1KO flies. Overall, our findings suggest that dinotefuran acts on distinct nAChR subtypes.


Assuntos
Inseticidas , Receptores Nicotínicos , Animais , Inseticidas/farmacologia , Receptores Nicotínicos/metabolismo , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Insetos , Drosophila/metabolismo
4.
Pestic Biochem Physiol ; 181: 105008, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35082031

RESUMO

γ-Aminobutyric acid (GABA) receptors (GABARs) are ligand-gated Cl- channels, which cause an influx of Cl- that inhibits excitation in postsynaptic cells upon activation. GABARs are important targets for drugs and pest control chemicals. We previously reported that the isoxazoline ectoparasiticide fluralaner inhibits GABA-induced currents in housefly (Musca domestica) GABARs by binding to the putative binding site in the transmembrane subunit interface. In the present study, we investigated whether fluralaner inhibits the GABA response in the GABAR activated state, the resting state, or both, using two-electrode voltage clamp electrophysiology protocols. We found that inhibition progresses over time to steady-state levels by repeated short applications of GABA during fluralaner perfusion. The GABA response was not impaired by fluralaner treatment in the GABAR resting state. However, once inhibited, the GABA response was not restored by repeated applications of GABA. These findings suggest that fluralaner might reach the binding site of the activated conformation of GABARs in a stepwise fashion and tightly bind to it.


Assuntos
Moscas Domésticas , Inseticidas , Animais , Isoxazóis/farmacologia , Receptores de GABA/metabolismo , Receptores de GABA-A
5.
Pestic Biochem Physiol ; 177: 104895, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34301357

RESUMO

(R)-Octopamine (OA), a major invertebrate biogenic amine, plays an important role in a wide variety of physiological processes as a neurohormone, neuromodulator, and neurotransmitter in insects. OA receptors (OARs) are class A G protein-coupled receptors that specifically bind OA to activate downstream signaling cascades by coupling to G proteins and presumably other regulatory proteins. These receptors are broadly classified as α- and ß-adrenergic-like OARs (α- and ß-ALOARs). OARs are considered important targets of insecticides and acaricides. In the present study, we examined the actions of an array of 13 heterocyclic OAR agonists with the moieties that correspond to the phenyl group and the basic nitrogen atom of OA on α- and ß-ALOARs from the silkworm (Bombyx mori) and the signaling pathways activated through these actions. The results indicated that these compounds display structure-dependent receptor subtype selectivity and G protein subtype preference, underscoring the need to determine which subtype and signaling pathway mediates toxicologically relevant effects for the efficient discovery of novel pest control chemicals. The results of insecticidal assays using B. mori larvae suggested that the activation of signal transduction pathways via α-ALOARs might be mainly responsible for the toxicological effects of the heterocycles.


Assuntos
Bombyx , Receptores de Amina Biogênica , Animais , Bombyx/genética , Bombyx/metabolismo , Proteínas de Ligação ao GTP , Octopamina , Receptores de Amina Biogênica/genética
6.
Pestic Biochem Physiol ; 163: 123-129, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31973848

RESUMO

The isoxazoline ectoparasiticide fluralaner exerts antiparasitic effects by inhibiting the function of γ-aminobutyric acid (GABA) receptors (GABARs). The present study was conducted to identify the amino acid residues that contribute to the high sensitivity of insect GABARs to fluralaner. We generated housefly (Musca domestica) GABARs with amino acid substitutions in the first through third α-helical transmembrane segments (TM1-TM3) of the RDL subunit using site-directed mutagenesis and examined the effects of the substitutions on the sensitivity of GABARs expressed in Xenopus oocytes to fluralaner using two-electrode voltage clamp electrophysiology. The Q271L substitution in TM1 caused a significant reduction in the sensitivity to fluralaner. Although the I274A and I274F substitutions in TM1 did not affect fluralaner sensitivity, the I274C substitution significantly enhanced the sensitivity to fluralaner. In contrast, the L278C substitution in TM1 reduced fluralaner sensitivity. Substitutions of Gly333 in TM3 led to substantial reductions in the sensitivity to fluralaner. These findings indicate that Gln271, Ile274, Leu278, and Gly333, which are situated in the outer half of the transmembrane subunit interface, are closely related to the antagonism of GABARs by fluralaner.


Assuntos
Moscas Domésticas , Receptores de GABA , Substituição de Aminoácidos , Animais , Isoxazóis , Oócitos , Receptores de GABA-A
7.
Bioorg Med Chem ; 27(2): 416-424, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30579800

RESUMO

Competitive antagonists (CAs) of ionotropic GABA receptors (GABARs) reportedly exhibit insecticidal activity and have potential for development as novel insecticides for overcoming emerging resistance to traditional GABAR-targeting insecticides. Our previous studies demonstrated that 4,5-disubstituted 3-isoxazolols or 3-isothiazolols are an important class of insect GABAR CAs. In the present study, we synthesized a series of 4-aryl-5-carbamoyl-3-isoxazolols and examined their antagonism of insect GABARs expressed in Xenopus oocytes. Several of these 3-isoxazolols exhibited potent antagonistic activities against housefly and common cutworm GABARs, with IC50 values in the low-micromolar range in both receptors. 4-(3-Amino-4-methylphenyl)-5-carbamoyl-3-isoxazolol (3u) displayed the highest antagonism, with IC50 values of 2.0 and 0.9 µM in housefly and common cutworm GABARs, respectively. Most of the synthesized 3-isoxazolols showed moderate larvicidal activities against common cutworms, with more than 50% mortality at 100 µg/g. These results indicate that 4-monocyclic aryl-5-carbamoyl-3-isoxazolol is a promising scaffold for insect GABAR CA discovery and provide important information for the design and development of GABAR-targeting insecticides with a novel mode of action.


Assuntos
Carbamatos/farmacologia , Antagonistas GABAérgicos/farmacologia , Proteínas de Insetos/antagonistas & inibidores , Inseticidas/farmacologia , Isoxazóis/farmacologia , Animais , Carbamatos/síntese química , Carbamatos/química , Domínio Catalítico , Antagonistas GABAérgicos/síntese química , Antagonistas GABAérgicos/química , Moscas Domésticas , Proteínas de Insetos/química , Inseticidas/síntese química , Inseticidas/química , Isoxazóis/síntese química , Isoxazóis/química , Simulação de Acoplamento Molecular , Receptores de GABA/química , Spodoptera , Xenopus/genética
8.
Arch Insect Biochem Physiol ; 101(1): e21541, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30821008

RESUMO

Insect γ-aminobutyric acid (GABA) receptors are important as major inhibitory neurotransmitter receptors and targets for insecticides. The housefly GABA receptor subunit gene MdRdl is alternatively spliced at exons 3 (a or b) and 6 (c or d) to yield the variants of ac, ad, bc, and bd combinations. In the present study, the expression of the MdRdl transcript in the body parts and in the developmental stages of the housefly Musca domestica was examined by quantitative polymerase chain reaction using specific primers that amplify the combinations of alternative exons. The results indicated that the transcripts of MdRdl, including four combinations, were highly expressed in the adult stage. MdRdlbd was the most abundant in the adult head. The expression pattern did not change in the adult stage over 7 days after eclosion. The expression level of the MdRdl bd transcript in the female head was similar to that of the male head. In contrast, MdRdl bc was the predominant transcript in the pupal head and the adult leg. Because the homomeric Rdl bc GABA receptor has a high affinity for GABA, our results provide grounds for designing agonist or competitive-antagonist insecticides that target the orthosteric site of the GABA receptor containing this Rdl variant.


Assuntos
Processamento Alternativo , Moscas Domésticas/genética , Receptores de GABA/genética , Transcriptoma , Animais , Éxons , Feminino , Cabeça , Moscas Domésticas/crescimento & desenvolvimento , Moscas Domésticas/metabolismo , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Receptores de GABA/metabolismo , Análise de Sequência de DNA
9.
Mol Pharmacol ; 92(5): 546-555, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28887352

RESUMO

Fluralaner (Bravecto) is a recently marketed isoxazoline ectoparasiticide. This compound potently inhibits GABA-gated chloride channels (GABACls) and less potently glutamate-gated chloride channels (GluCls) in insects. The mechanism underlying this selectivity is unknown. Therefore, we sought to identify the amino acid residues causing the low potency of fluralaner toward GluCls. We examined the fluralaner sensitivity of mutant housefly (Musca domestica) GluCls in which amino acid residues in the transmembrane subunit interface were replaced with the positionally equivalent amino acids of Musca GABACls. Of these amino acids, substitution of an amino acid (Leu315) in the third transmembrane region (TM3) with an aromatic amino acid dramatically enhanced the potency of fluralaner in the GluCls. In stark contrast to the enhancement of fluralaner potency, this mutation eliminated the activation of currents and the potentiation but not the antagonism of glutamate responses that are otherwise all elicited by the macrolide parasiticide ivermectin (IVM). Our findings indicate that the amino acid Leu315 in Musca GluCls plays significant roles in determining the selectivity of fluralaner and IVM for these channels. Given the high sequence similarity of TM3, this may hold true more widely for the GluCls and GABACls of other insect species.


Assuntos
Substituição de Aminoácidos/genética , Antiparasitários/farmacologia , Canais de Cloreto/genética , Isoxazóis/farmacologia , Ivermectina/farmacologia , Canais Iônicos de Abertura Ativada por Ligante/genética , Sequência de Aminoácidos , Substituição de Aminoácidos/efeitos dos fármacos , Animais , Antiparasitários/metabolismo , Caenorhabditis elegans , Canais de Cloreto/química , Canais de Cloreto/metabolismo , Relação Dose-Resposta a Droga , Feminino , Moscas Domésticas , Inseticidas/metabolismo , Inseticidas/farmacologia , Isoxazóis/metabolismo , Ivermectina/metabolismo , Canais Iônicos de Abertura Ativada por Ligante/química , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Estrutura Secundária de Proteína , Xenopus laevis
10.
Pestic Biochem Physiol ; 120: 82-90, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25987225

RESUMO

Glutamate-gated chloride channels (GluCls) are inhibitory neurotransmitter receptors that are present only in invertebrates such as nematodes and insects. These channels are important targets of insecticidal, acaricidal, and anthelmintic macrolides such as avermectins, ivermectin (IVM), and milbemycins. To identify the amino acid residues that interact with IVM in GluCls, three IVM B1a derivatives with different photoreactive substitutions at C-13 were synthesized in the present study. These derivatives displayed low- or subnanomolar affinity for parasitic nematode (Haemonchus contortus) and silkworm (Bombyx mori) GluCls expressed in COS-1 cells. The derivatives also activated homomeric H. contortus GluCls expressed in Xenopus oocytes. The results indicate that synthesized photoreactive IVM B1a derivatives have superior affinity and functionality for chemically labeling the macrolide-binding site in GluCls. .


Assuntos
Canais de Cloreto/metabolismo , Proteínas de Helminto/metabolismo , Proteínas de Insetos/metabolismo , Ivermectina/análogos & derivados , Ivermectina/farmacologia , Animais , Bombyx , Células COS , Canais de Cloreto/genética , Chlorocebus aethiops , Feminino , Haemonchus , Proteínas de Helminto/genética , Proteínas de Insetos/genética , Ivermectina/síntese química , Oócitos/metabolismo , Xenopus laevis
11.
Bioorg Med Chem ; 22(17): 4637-45, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25112550

RESUMO

γ-Aminobutyric acid (GABA) receptors are important targets of parasiticides/insecticides. Several 4-substituted analogs of the partial GABAA receptor agonist 5-(4-piperidyl)-3-isothiazolol (Thio-4-PIOL) were synthesized and examined for their antagonism of insect GABA receptors expressed in Drosophila S2 cells or Xenopus oocytes. Thio-4-PIOL showed weak antagonism of three insect GABA receptors. The antagonistic activity of Thio-4-PIOL was enhanced by introducing bicyclic aromatic substituents into the 4-position of the isothiazole ring. The 2-naphthyl and the 3-biphenylyl analogs displayed antagonist potencies with half maximal inhibitory concentrations in the low micromolar range. The 2-naphthyl analog induced a parallel rightward shift of the GABA concentration-response curve, suggesting competitive antagonism by these analogs. Both compounds exhibited weak insecticidal activities against houseflies. Thus, the orthosteric site of insect GABA receptors might be a potential target site of insecticides.


Assuntos
Antagonistas GABAérgicos/farmacologia , Piperidinas/farmacologia , Receptores de GABA/metabolismo , Tiazóis/farmacologia , Animais , Ligação Competitiva/efeitos dos fármacos , Relação Dose-Resposta a Droga , Antagonistas GABAérgicos/síntese química , Antagonistas GABAérgicos/química , Moscas Domésticas , Inseticidas/síntese química , Inseticidas/química , Inseticidas/farmacologia , Modelos Moleculares , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/química , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química
12.
Pestic Biochem Physiol ; 107(3): 285-92, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24267689

RESUMO

γ-Aminobutyric acid (GABA) receptors (GABARs) are an important target for existing insecticides such as fiproles. These insecticides act as noncompetitive antagonists (channel blockers) for insect GABARs by binding to a site within the intrinsic channel of the GABAR. Recently, a novel class of insecticides, 3-benzamido-N-phenylbenzamides (BPBs), was shown to inhibit GABARs by binding to a site distinct from the site for fiproles. We examined the binding site of BPBs in the adult housefly by means of radioligand-binding and electrophysiological experiments. 3-Benzamido-N-(2,6-dimethyl-4-perfluoroisopropylphenyl)-2-fluorobenzamide (BPB 1) (the N-demethyl BPB) was a partial, but potent, inhibitor of [(3)H]4'-ethynyl-4-n-propylbicycloorthobenzoate (GABA channel blocker) binding to housefly head membranes, whereas the 3-(N-methyl)benzamido congener (the N-methyl BPB) had low or little activity. A total of 15 BPB analogs were tested for their abilities to inhibit [(3)H]BPB 1 binding to the head membranes. The N-demethyl analogs, known to be highly effective insecticides, potently inhibited the [(3)H]BPB 1 binding, but the N-methyl analogs did not even though they, too, are considered highly effective. [(3)H]BPB 1 equally bound to the head membranes from wild-type and dieldrin-resistant (rdl mutant) houseflies. GABA allosterically inhibited [(3)H]BPB 1 binding. By contrast, channel blocker-type antagonists enhanced [(3)H]BPB 1 binding to housefly head membranes by increasing the affinity of BPB 1. Antiparasitic macrolides, such as ivermectin B1a, were potent inhibitors of [(3)H]BPB 1 binding. BPB 1 inhibited GABA-induced currents in housefly GABARs expressed in Xenopus oocytes, whereas it failed to inhibit l-glutamate-induced currents in inhibitory l-glutamate receptors. Overall, these findings indicate that BPBs act at a novel allosteric site that is different from the site for channel blocker-type antagonists and that is probably overlapped with the site for macrolides in insect GABARs.


Assuntos
Inseticidas/química , Inseticidas/metabolismo , Receptores de GABA/química , Receptores de GABA/metabolismo , Sítio Alostérico , Animais , Antagonistas GABAérgicos/química , Antagonistas GABAérgicos/metabolismo , Moscas Domésticas , Ivermectina/análogos & derivados , Ivermectina/metabolismo
13.
Pest Manag Sci ; 79(10): 4078-4082, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37288963

RESUMO

BACKGROUND: Fluralaner is the first isoxazoline ectoparasiticide developed to protect companion animals from fleas and ticks. Fluralaner primarily inhibits arthropod γ-aminobutyric acid receptors (GABARs), which are ligand-gated ion channels comprising five subunits arranged around the channel pore. We previously reported that the action site of fluralaner resides at the M1-M3 transmembrane interface between adjacent GABAR subunits. To investigate whether fluralaner interacts with the second transmembrane segment (M2) located deep in the interface, we generated four housefly RDL GABAR mutants with non-conservative amino acid substitutions in the M2 region. RESULTS: Electrophysiological analysis of GABARs expressed in Xenopus oocytes indicated that S313A and S314A mutants exhibited fluralaner sensitivities similar to that of the wild type. M312S mutant exhibited approximately seven-fold lower sensitivity than that of the wild type. Notably, the N316L mutant was almost insensitive to fluralaner. CONCLUSION: The findings of this study indicate that the conserved external amino acid residues of insect GABAR channels play a critical role in the antagonistic effect of fluralaner. © 2023 Society of Chemical Industry.


Assuntos
Inseticidas , Receptores de GABA , Animais , Receptores de GABA/genética , Receptores de GABA/metabolismo , Aminoácidos , Inseticidas/química , Insetos/metabolismo
14.
Biochem Biophys Res Commun ; 419(3): 562-6, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22369940

RESUMO

Glutamate-gated chloride (GluCl) channels are pentameric receptors for the inhibitory neurotransmitter glutamate in invertebrates and are a major target for macrolide anthelmintics. Three amino acids in GluCl channels are reported to render macrolide resistance in nematodes and insects. To examine whether these three amino acids are involved in binding of the antiparasitic agent milbemycin (MLM) to the GluCl channels of the nematode parasite Haemonchus contortus, the equivalent amino acids (L256, P316, and G329) of the Hco-AVR-14B subunit were substituted with various amino acids. cDNAs encoding the wild type and mutants of this subunit were transfected into COS-1 cells for transient expression and analysis of GluCl channels. The abilities of these mutant channels to bind [(3)H]MLM A(4) were remarkably decreased when compared with the wild-type channel. In patch clamp analysis, L256F and P316S mutant channels were 37- and 100-fold less sensitive to MLM A(4) when compared with the wild-type channel, respectively. These findings indicate that amino acid changes in the ß10 strand, the M2-M3 linker, and the M3 region influence MLM A(4) binding to the channel. Homology modeling and ligand docking studies suggest the presence of two potential binding sites for MLM A(4).


Assuntos
Aminoácidos/química , Antiparasitários/química , Canais de Cloreto/química , Aminoácidos/genética , Animais , Sítios de Ligação , Células COS , Canais de Cloreto/genética , Chlorocebus aethiops , Haemonchus , Macrolídeos/química , Técnicas de Patch-Clamp , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
15.
J Pestic Sci ; 47(2): 78-85, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35800394

RESUMO

γ-Aminobutyric acid receptors (GABARs) mediate fast inhibitory neurotransmission and are targets for insecticides. GABARs are composed of five subunits, the composition of which dictates the pharmacological characteristics of GABARs. Both competitive and noncompetitive GABAR antagonists can be used as insecticides. Gabazine is a potent competitive antagonist of mammalian α1ß2γ2 GABARs; however, it is less potent against insect GABARs. To explore how gabazine interacts with GABARs, we examined whether the sensitivity of the small brown planthopper (Laodelphax striatellus) RDL GABAR (LsRDLR) to gabazine is increased when its amino acid residues are substituted with α1ß2γ2 GABAR residues. In the results, two of the generated mutants showed enhanced gabazine sensitivity. Docking simulations of gabazine using LsRDLR homology models and an α1ß2γ2 GABAR cryo-EM structure revealed that the accommodation of gabazine into the "aromatic box" in the orthosteric site lowered the binding energy. This information may help in designing GABAR-targeting insecticides with novel modes of action.

16.
Pest Manag Sci ; 77(8): 3763-3776, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32954620

RESUMO

BACKGROUND: Root-knot nematodes are plant-parasitic nematodes that cause immense damage to a broad range of cultivated crops by forming root galls, resulting in yield losses in crops. To facilitate the development of faster-acting selective nematicides, we cloned three cDNAs encoding UNC-49B proteins from the southern root-knot nematode Meloidogyne incognita and examined their functional and pharmacological properties by two-electrode voltage clamp electrophysiology using a Xenopus oocyte expression system. RESULTS: The three cloned cDNAs encoded Min-UNC-49B, Min-UNC-49B-L and Min-UNC-49B-XL; the last two proteins have longer N-terminal regions than the first protein. When expressed in Xenopus oocytes, these proteins responded to γ-aminobutyric acid (GABA) to activate currents with high-micromolar or low-millimolar half-maximal effective concentration (EC50 ) values, indicating the formation of functional homo-pentameric GABA receptors. Fipronil and picrotoxinin inhibited GABA-induced currents with high-nanomolar and low-micromolar half-maximal inhibitory concentration (IC50 ) values, respectively, in oocytes expressing Min-UNC-49B. The G2'A and T6'M mutations in the second transmembrane domain of Min-UNC-49B enhanced and reduced the sensitivity of Min-UNC-49B to these two antagonists, respectively. Samaderine B and SF-14 inhibited GABA responses in oocytes expressing Min-UNC-49B with low-micromolar and high-nanomolar IC50 values, respectively. Ivermectin, α-terpineol, thymol and methyl eugenol exerted dual effects on Min-UNC-49B by potentiating currents induced by low concentrations of GABA and inhibiting currents induced by high concentrations of GABA. CONCLUSION: We have shown that structurally diverse compounds act at Min-UNC-49B GABA receptors. Our results may serve as a starting point to decipher the molecular function of native GABA receptors of plant-parasitic nematodes, which could aid in the structure-based design of novel nematicides. © 2020 Society of Chemical Industry.


Assuntos
Receptores de GABA , Tylenchoidea , Animais , Clonagem Molecular , Receptores de GABA/genética , Xenopus laevis , Ácido gama-Aminobutírico
17.
Biochem Biophys Res Commun ; 391(1): 744-9, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19944072

RESUMO

A structurally unique isoxazoline class compound, A1443, exhibits antiparasitic activity against cat fleas and dog ticks comparable to that of the commercial ectoparasiticide fipronil. This isoxazoline compound inhibits specific binding of the gamma-aminobutyric acid (GABA) receptor channel blocker [(3)H]4'-ethynyl-4-n-propylbicycloorthobenzoate (EBOB) to housefly-head membranes, with an IC(50) value of 455pM. In contrast, the IC(50) value in rat-brain membranes is>10muM. To study the mode of action of this isoxazoline, we utilized MdGBCl and MdGluCl cDNAs, which encode the subunits of housefly GABA- and glutamate-gated chloride channels, respectively. Two-electrode voltage clamp electrophysiology was used to confirm that A1443 blocks GABA- and glutamate-induced chloride currents in Xenopus oocytes expressing MdGBCl or MdGluCl channels, with IC(50) values of 5.32 and 79.9 nM, respectively. Blockade by A1443 was observed in A2'S-MdGBCl and S2'A-MdGluCl mutant channels at levels similar to those of the respective wild-types, and houseflies expressing A2'S-MdGBCl channels were as susceptible to A1443 as standard houseflies. These findings indicate that A1443 is a novel and specific blocker of insect ligand-gated chloride channels.


Assuntos
Antiparasitários/farmacologia , Canais de Cloreto/antagonistas & inibidores , Moscas Domésticas/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Sifonápteros/efeitos dos fármacos , Carrapatos/efeitos dos fármacos , Xantinas/farmacologia , Animais , Encéfalo/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/antagonistas & inibidores , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Gatos , Cães , Agonistas GABAérgicos/farmacologia , Antagonistas GABAérgicos/farmacologia , Ligantes , Mutação , Ratos , Receptores de GABA/efeitos dos fármacos , Receptores de GABA/genética , Receptores de Glutamato/efeitos dos fármacos , Receptores de Glutamato/genética , Xenopus
18.
Pest Manag Sci ; 76(11): 3720-3728, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32431064

RESUMO

BACKGROUND: Amitraz is a unique formamidine-class acaricide/insecticide that effectively controls ticks, mites, and insect pests. However, the recent emergence of amitraz-resistant cattle ticks is a serious problem that requires an urgent solution. A nonsynonymous single nucleotide polymorphism (A181T) leading to an amino acid substitution (I61F) in the ß-adrenergic-like (ß-AL) octopamine receptor (OAR) of amitraz-resistant southern cattle ticks (Rhipicephalus microplus) (RmßAOR) was proposed to be a cause of the amitraz resistance. However, it remains unclear whether this substitution exerts any functional effect on the action of amitraz. To make this clear, the functional role of this mutation was examined using an orthologous OAR (BmOAR2) from the silkworm (Bombyx mori). RESULTS: Both amitraz and its metabolite N2 -(2,4-dimethylphenyl)-N1 -methyformamidine (DPMF) elevated intracellular cyclic AMP levels as orthosteric OAR agonists in HEK-293 cells stably expressing BmOAR2. The I45F mutant of BmOAR2 (equivalent to I61F in RmßAOR) was generated and tested for its sensitivity to amitraz and DPMF. The assay result showed that the I45F mutation reduces the potency of DPMF to a level similar to that of the endogenous agonist (R)-OA in wild-type BmOAR2. CONCLUSION: The amino acid substitution found in the first transmembrane segment of RmßAOR most likely causes target-site insensitivity to DPMF, which might contribute to the resistance of R. microplus to amitraz. This needs to be further confirmed using RmßAOR. © 2020 Society of Chemical Industry.


Assuntos
Mutação Puntual , Adrenérgicos , Resistência a Medicamentos , Células HEK293 , Humanos , Receptores de Amina Biogênica , Toluidinas/farmacologia
19.
Biosci Biotechnol Biochem ; 73(7): 1591-8, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19584544

RESUMO

Fission yeast requires nutritional starvation to switch the mitotic cell cycle to sexual differentiation, but sam mutants, of which we had isolated nine alleles, mate without the starvation condition. These mutants are useful for understanding the mechanism underlying the way cells sense nutritional starvation and change the cell cycle. To identify the sam allele, we first sought phenotypes other than the original sam phenotype. We found that all nine sam mutants were sensitive to 1 M KCl, that sam2, sam3, sam4 and sam9 were sensitive to 0.1 M CaCl(2), and that only the sam4 mutant was sensitive to 150 J/m(2) UV. This peculiar phenotype of sam4 suggested to us that sam4 might be an allele of rad24, which encodes a 14-3-3 protein. In fact, the Rad24 protein disappeared in sam4 and the rad24 mRNA was not transcribed in sam4. In addition, the mutation that changed Gln to a stop codon was found in the rad24 locus of sam4. Hence we concluded that sam4 is an allele of rad24. We also found that over-expression of rad24 or rad25 (a paralog of rad24) has a suppressive effect on sam1, and that sam1 was not an allele of rad24 nor rad25. Thus 14-3-3 proteins are deeply involved in the switching of the mitotic cell cycle to the sexual differentiation of fission yeast.


Assuntos
Alelos , Proteínas de Ciclo Celular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Sequência de Bases , Proteínas de Ciclo Celular/biossíntese , Códon sem Sentido , Regulação para Baixo , Regulação Fúngica da Expressão Gênica , Dados de Sequência Molecular , Fenótipo , Proteínas de Schizosaccharomyces pombe/biossíntese , Transcrição Gênica
20.
Biochem Biophys Res Commun ; 371(4): 610-4, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18395516

RESUMO

Octopamine (OA) is thought to be the invertebrate counterpart of noradrenaline and regulates various behavioral patterns of invertebrates by activating OA receptors. As a typical G protein-coupled receptor, BmOAR1, a Bombyx mori alpha-adrenergic-like OA receptor, is coupled to both G(s) and G(q) proteins to induce the release of the intracellular second messengers cAMP and Ca(2+). In this study, we examined the pharmacological and functional properties of the cloned OA receptor, using OA enantiomers. The wild-type OA receptor exhibited significant stereoselectivity for OA enantiomers in cAMP production and binding affinity, but not in calcium signaling response. On the contrary, the Y412F mutant abolished the discrimination between OA enantiomers in the binding affinity and did not evoke any cAMP signaling response. This mutant exhibited levels of potency and efficacy similar to those of the wild-type receptor in the calcium assays. Taken together, these results suggest that Tyr412 might act as a molecular switch to regulate distinct G protein couplings, and a sequential activation model is proposed for such specific-residue-dependent, selective activation in receptors that are coupled to multiple G proteins.


Assuntos
Bombyx , Proteínas de Ligação ao GTP/metabolismo , Receptores de Amina Biogênica/metabolismo , Tirosina/metabolismo , Substituição de Aminoácidos , Animais , Linhagem Celular , Humanos , Modelos Moleculares , Octopamina/farmacologia , Conformação Proteica , Receptores de Amina Biogênica/química , Receptores de Amina Biogênica/genética , Tirosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA