RESUMO
Cancer genome sequencing has implicated the cytosine deaminase activity of apolipoprotein B mRNA editing enzyme catalytic polypeptide-like (APOBEC) genes as an important source of mutations in diverse cancers, with APOBEC3B (A3B) expression especially correlated with such cancer mutations. To better understand the processes directing A3B over-expression in cancer, and possible therapeutic avenues for targeting A3B, we have investigated the regulation of A3B gene expression. Here, we show that A3B expression is inversely related to p53 status in different cancer types and demonstrate that this is due to a direct and pivotal role for p53 in repressing A3B expression. This occurs through the induction of p21 (CDKN1A) and the recruitment of the repressive DREAM complex to the A3B gene promoter, such that loss of p53 through mutation, or human papilloma virus-mediated inhibition, prevents recruitment of the complex, thereby causing elevated A3B expression and cytosine deaminase activity in cancer cells. As p53 is frequently mutated in cancer, our findings provide a mechanism by which p53 loss can promote cancer mutagenesis.
Assuntos
Citidina Desaminase/genética , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade Menor/genética , Proteína Supressora de Tumor p53/genética , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citidina Desaminase/metabolismo , Células HCT116 , Humanos , Immunoblotting , Antígenos de Histocompatibilidade Menor/metabolismo , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Supressora de Tumor p53/metabolismoRESUMO
The role of uracil in genomic DNA has been recently re-evaluated. It is now widely accepted to be a physiologically important DNA element in diverse systems from specific phages to antibody maturation and Drosophila development. Further relevant investigations would largely benefit from a novel reliable and fast method to gain quantitative and qualitative information on uracil levels in DNA both in vitro and in situ, especially since current techniques does not allow in situ cellular detection. Here, starting from a catalytically inactive uracil-DNA glycosylase protein, we have designed several uracil sensor fusion proteins. The designed constructs can be applied as molecular recognition tools that can be detected with conventional antibodies in dot-blot applications and may also serve as in situ uracil-DNA sensors in cellular techniques. Our method is verified on numerous prokaryotic and eukaryotic cellular systems. The method is easy to use and can be applied in a high-throughput manner. It does not require expensive equipment or complex know-how, facilitating its easy implementation in any basic molecular biology laboratory. Elevated genomic uracil levels from cells of diverse genetic backgrounds and/or treated with different drugs can be demonstrated also in situ, within the cell.
Assuntos
DNA/química , Uracila/análise , Catálise , Linhagem Celular Tumoral , Humanos , Técnicas In VitroRESUMO
Transfer of phage-related pathogenicity islands of Staphylococcus aureus (SaPI-s) was recently reported to be activated by helper phage dUTPases. This is a novel function for dUTPases otherwise involved in preservation of genomic integrity by sanitizing the dNTP pool. Here we investigated the molecular mechanism of the dUTPase-induced gene expression control using direct techniques. The expression of SaPI transfer initiating proteins is repressed by proteins called Stl. We found that Φ11 helper phage dUTPase eliminates SaPIbov1 Stl binding to its cognate DNA by binding tightly to Stl protein. We also show that dUTPase enzymatic activity is strongly inhibited in the dUTPase:Stl complex and that the dUTPase:dUTP complex is inaccessible to the Stl repressor. Our results disprove the previously proposed G-protein-like mechanism of SaPI transfer activation. We propose that the transfer only occurs if dUTP is cleared from the nucleotide pool, a condition promoting genomic stability of the virulence elements.
Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Pirofosfatases/metabolismo , Proteínas Repressoras/metabolismo , Staphylococcus aureus/genética , Proteínas de Bactérias/antagonistas & inibidores , Ilhas Genômicas , Pirofosfatases/antagonistas & inibidores , Pirofosfatases/genética , Proteínas Repressoras/antagonistas & inibidores , Staphylococcus aureus/enzimologia , Staphylococcus aureus/metabolismoRESUMO
The phospholipid biosynthesis of the malaria parasite, Plasmodium falciparum is a key process for its survival and its inhibition is a validated antimalarial therapeutic approach. The second and rate-limiting step of the de novo phosphatidylcholine biosynthesis is catalysed by CTP: phosphocholine cytidylyltransferase (PfCCT), which has a key regulatory function within the pathway. Here, we investigate the functional impact of the key structural differences and their respective role in the structurally unique pseudo-heterodimer PfCCT protein in a heterologous cellular context using the thermosensitive CCT-mutant CHO-MT58 cell line. We found that a Plasmodium-specific lysine-rich insertion within the catalytic domain of PfCCT acts as a nuclear localization signal and its deletion decreases the nuclear propensity of the protein in the model cell line. We further showed that the putative membrane-binding domain also affected the nuclear localization of the protein. Moreover, activation of phosphatidylcholine biosynthesis by phospholipase C treatment induces the partial nuclear-to-cytoplasmic translocation of PfCCT. We additionally investigated the cellular function of several PfCCT truncated constructs in a CHO-MT58 based rescue assay. In absence of the endogenous CCT activity we observed that truncated constructs lacking the lysine-rich insertion, or the membrane-binding domain provided similar cell survival ratio as the full length PfCCT protein.
Assuntos
Núcleo Celular/metabolismo , Colina-Fosfato Citidililtransferase/química , Colina-Fosfato Citidililtransferase/metabolismo , Sinais de Localização Nuclear , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Domínio Catalítico , Núcleo Celular/genética , Colina-Fosfato Citidililtransferase/genética , Cricetinae , Cricetulus , Citidina Trifosfato/metabolismo , Fosforilcolina/metabolismo , Ligação Proteica , Homologia de Sequência de AminoácidosRESUMO
Numerous anti-cancer drugs perturb thymidylate biosynthesis and lead to genomic uracil incorporation contributing to their antiproliferative effect. Still, it is not yet characterized if uracil incorporations have any positional preference. Here, we aimed to uncover genome-wide alterations in uracil pattern upon drug treatments in human cancer cell line models derived from HCT116. We developed a straightforward U-DNA sequencing method (U-DNA-Seq) that was combined with in situ super-resolution imaging. Using a novel robust analysis pipeline, we found broad regions with elevated probability of uracil occurrence both in treated and non-treated cells. Correlation with chromatin markers and other genomic features shows that non-treated cells possess uracil in the late replicating constitutive heterochromatic regions, while drug treatment induced a shift of incorporated uracil towards segments that are normally more active/functional. Data were corroborated by colocalization studies via dSTORM microscopy. This approach can be applied to study the dynamic spatio-temporal nature of genomic uracil.
Assuntos
Antineoplásicos/farmacologia , DNA , Genoma , Uracila , DNA/análise , DNA/biossíntese , DNA/química , DNA/genética , Genoma/efeitos dos fármacos , Genoma/genética , Genômica , Células HCT116 , Humanos , Microscopia , Análise de Sequência de DNA , Uracila/análise , Uracila/biossíntese , Uracila/químicaRESUMO
Plasmodium falciparum parasites undergo multiple genome duplication events during their development. Within the intraerythrocytic stages, parasites encounter an oxidative environment and DNA synthesis necessarily proceeds under these circumstances. In addition to these conditions, the extreme AT bias of the P. falciparum genome poses further constraints for DNA synthesis. Taken together, these circumstances may allow appearance of damaged bases in the Plasmodium DNA. Here, we focus on uracil that may arise in DNA either via oxidative deamination or thymine-replacing incorporation. We determine the level of uracil at the ring, trophozoite, and schizont intraerythrocytic stages and evaluate the base-excision repair potential of P. falciparum to deal with uracil-DNA repair. We find approximately 7-10 uracil per million bases in the different parasite stages. This level is considerably higher than found in other wild-type organisms from bacteria to mammalian species. Based on a systematic assessment of P. falciparum genome and transcriptome databases, we conclude that uracil-DNA repair relies on one single uracil-DNA glycosylase and proceeds through the long-patch base-excision repair route. Although potentially efficient, the repair route still leaves considerable level of uracils in parasite DNA, which may contribute to mutation rates in P. falciparum.
RESUMO
Nucleocytoplasmic trafficking of large macromolecules requires an active transport machinery. In many cases, this is initiated by binding of the nuclear localization signal (NLS) peptide of cargo proteins to importin-α molecules. Fine orchestration of nucleocytoplasmic trafficking is of particularly high importance for proteins involved in maintenance of genome integrity, such as dUTPases, which are responsible for prevention of uracil incorporation into the genome. In most eukaryotes, dUTPases have two homotrimeric isoforms: one of these contains three NLSs and is present in the cell nucleus, while the other is located in the cytoplasm or the mitochondria. Here we focus on the unusual occurrence of a pseudo-heterotrimeric dUTPase in Drosophila virilis that contains one NLS, and investigate its localization pattern compared to the homotrimeric dUTPase isoforms of Drosophila melanogaster. Although the interaction of individual NLSs with importin-α has been well characterized, the question of how multiple NLSs of oligomeric cargo proteins affect their trafficking has been less frequently addressed in adequate detail. Using the D. virilis dUTPase as a fully relevant physiologically occurring model protein, we show that NLS copy number influences the efficiency of nuclear import in both insect and mammalian cell lines, as well as in D. melanogaster and D. virilis tissues. Biophysical data indicate that NLS copy number determines the stoichiometry of complexation between importin-α and dUTPases. The main conclusion of our study is that, in D. virilis, a single dUTPase isoform efficiently reproduces the cellular dUTPase distribution pattern that requires two isoforms in D. melanogaster.