Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Osteoporos Int ; 35(7): 1231-1241, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38658459

RESUMO

There is imminent refracture risk in elderly individuals for up to six years, with a decline thereafter except in women below 75 who face a constant elevated risk. Elderly men with fractures face the highest mortality risk, particularly those with hip and vertebral fractures. Targeted monitoring and treatment strategies are recommended. PURPOSE: Current management and interventions for osteoporotic fractures typically focus on bone mineral density loss, resulting in suboptimal evaluation of fracture risk. The aim of the study is to understand the progression of fractures to refractures and mortality in the elderly using multi-state models to better target those at risk. METHODS: This prospective, observational study analysed data from the AGES-Reykjavik cohort of Icelandic elderly, using multi-state models to analyse the evolution of fractures into refractures and mortality, and to estimate the probability of future events in subjects based on prognostic factors. RESULTS: At baseline, 4778 older individuals aged 65 years and older were included. Elderly men, and elderly women above 80 years of age, had a distinct imminent refracture risk that lasted between 2-6 years, followed by a sharp decline. However, elderly women below 75 continued to maintain a nearly constant refracture risk profile for ten years. Hip (30-63%) and vertebral (24-55%) fractures carried the highest 5-year mortality burden for elderly men and women, regardless of age, and for elderly men over 80, lower leg fractures also posed a significant mortality risk. CONCLUSION: The risk of refracture significantly increases in the first six years following the initial fracture. Elderly women, who experience fractures at a younger age, should be closely monitored to address their long-term elevated refracture risk. Elderly men, especially those with hip and vertebral fractures, face substantial mortality risk and require prioritized monitoring and treatment.


Assuntos
Fraturas do Quadril , Fraturas por Osteoporose , Recidiva , Fraturas da Coluna Vertebral , Humanos , Fraturas por Osteoporose/mortalidade , Idoso , Masculino , Feminino , Islândia/epidemiologia , Idoso de 80 Anos ou mais , Fraturas do Quadril/mortalidade , Fraturas da Coluna Vertebral/mortalidade , Estudos Prospectivos , Medição de Risco/métodos , Progressão da Doença , Densidade Óssea/fisiologia , Prognóstico
2.
Bone ; 154: 116219, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34571206

RESUMO

Hip fractures associated with a high economic burden, loss of independence, and a high rate of post-fracture mortality, are a major health concern for modern societies. Areal bone mineral density is the current clinical metric of choice when assessing an individual's future risk of fracture. However, this metric has been shown to lack sensitivity and specificity in the targeted selection of individuals for preventive interventions. Although femoral strength derived from computed tomography based finite element models has been proposed as an alternative based on its superior femoral strength prediction ex vivo, such predictions have only shown marginal or no improvement for assessing hip fracture risk. This study compares finite element derived femoral strength to aBMD as a metric for hip fracture risk assessment in subjects (N = 601) from the AGES Reykjavik Study cohort and analyses the dependence of femoral strength predictions and classification accuracy on the material model and femoral loading alignment. We found hip fracture classification based on finite element derived femoral strength to be significantly improved compared to aBMD. Finite element models with non-linear material models performed better at classifying hip fractures compared to finite element models with linear material models and loading alignments with low internal rotation and adduction, which do not correspond to weak femur alignments, were found to be most suitable for hip fracture classification.


Assuntos
Fraturas do Quadril , Ossos Pélvicos , Absorciometria de Fóton , Densidade Óssea , Fêmur/diagnóstico por imagem , Análise de Elementos Finitos , Fraturas do Quadril/epidemiologia , Humanos
3.
J Mech Behav Biomed Mater ; 110: 103866, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32957183

RESUMO

INTRODUCTION: Ultimate strength-density relationships for bone have been reported with widely varying results. Reliable bone strength predictions are crucial for many applications that aim to assess bone failure. Bone density and bone morphology have been proposed to explain most of the variance in measured bone strength. If this holds true, it could lead to the derivation of a single ultimate strength-density-morphology relationship for all anatomical sites. METHODS: All relevant literature was reviewed. Ultimate strength-density relationships derived from mechanical testing of human bone tissue were included. The reported relationships were translated to ultimate strength-apparent density relationships and normalized with respect to strain rate. Results were grouped based on bone tissue type (cancellous or cortical), anatomical site, and loading mode (tension vs. compression). When possible, the relationships were compared to existing ultimate strength-density-morphology relationships. RESULTS: Relationships that considered bone density and morphology covered the full spectrum of eight-fold inter-study difference in reported compressive ultimate strength-density relationships for trabecular bone. This was true for studies that tested specimens in different loading direction and tissue from different anatomical sites. Sparse data was found for ultimate strength-density relationships in tension and for cortical bone properties transverse to the main loading axis of the bone. CONCLUSIONS: Ultimate strength-density-morphology relationships could explain measured strength across anatomical sites and loading directions. We recommend testing of bone specimens in other directions than along the main trabecular alignment and to include bone morphology in studies that investigate bone material properties. The lack of tensile strength data did not allow for drawing conclusions on ultimate strength-density-morphology relationships. Further studies are needed. Ideally, these studies would investigate both tensile and compressive strength-density relationships, including morphology, to close this gap and lead to more accurate evaluation of bone failure.


Assuntos
Densidade Óssea , Osso e Ossos , Força Compressiva , Humanos , Estresse Mecânico , Resistência à Tração
4.
Med Eng Phys ; 30(4): 444-53, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-17627862

RESUMO

The aim of the present study is to compare the results from subject-specific finite element analysis (FEA) of a human femur to experimental measurements, using two different methods for assigning material properties to the FE models. A modified material mapping strategy allowing for spatial variation of material properties within the elements and Young's modulus surface corrections is presented and compared to a more conventional strategy, whereby constant material properties are assigned to each element. The accuracy of the superficial stress-strain predictions was evaluated against experimental results from 13 strain gauges and five different load cases. Both methods predicted stresses with acceptable accuracy (R(2) = 0.92, root mean square error, RMSE < 10%), with the conventional method performing slightly better. The modified method performed better in strain prediction (R(2) = 0.85, RMSE = 23% versus R(2) = 0.79, RMSE = 31%).


Assuntos
Osso e Ossos/patologia , Fêmur/patologia , Animais , Automação , Força Compressiva , Desenho de Equipamento , Análise de Elementos Finitos , Cavalos , Humanos , Teste de Materiais , Modelos Estatísticos , Reprodutibilidade dos Testes , Estresse Mecânico , Tomografia Computadorizada por Raios X/métodos , Suporte de Carga
5.
Comput Methods Biomech Biomed Engin ; 19(16): 1693-1703, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27161828

RESUMO

In this study, we propose interactive graph cut image segmentation for fast creation of femur finite element (FE) models from clinical computed tomography scans for hip fracture prediction. Using a sample of N = 48 bone scans representing normal, osteopenic and osteoporotic subjects, the proximal femur was segmented using manual (gold standard) and graph cut segmentation. Segmentations were subsequently used to generate FE models to calculate overall stiffness and peak force in a sideways fall simulations. Results show that, comparable FE results can be obtained with the graph cut method, with a reduction from 20 to 2-5 min interaction time. Average differences between segmentation methods of 0.22 mm were not significantly correlated with differences in FE derived stiffness (R2 = 0.08, p = 0.05) and weakly correlated to differences in FE derived peak force (R2 = 0.16, p = 0.01). We further found that changes in automatically assigned boundary conditions as a consequence of small segmentation differences were significantly correlated with FE derived results. The proposed interactive graph cut segmentation software MITK-GEM is freely available online at https://simtk.org/home/mitk-gem .


Assuntos
Análise de Elementos Finitos , Fraturas do Quadril/diagnóstico por imagem , Fraturas do Quadril/diagnóstico , Modelos Teóricos , Interpretação de Imagem Radiográfica Assistida por Computador , Tomografia Computadorizada por Raios X/métodos , Acidentes por Quedas , Cabeça do Fêmur/diagnóstico por imagem , Cabeça do Fêmur/patologia , Articulação do Quadril , Humanos , Reprodutibilidade dos Testes , Software
6.
Med Eng Phys ; 31(5): 595-600, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19150253

RESUMO

Direct skeletal attachments for transfemoral amputees have been the subject of clinical trials since the early nineties. This method of attachment allows the amputee an unrestricted range of motion around the hip joint, better sitting comfort, improved sensory feedback through osseoperception, improved limb control and reduced soft tissue problems. However, the length of the rehabilitation period is perceived as a shortcoming by the amputees and the clinicians. The aim of the present study is to estimate the risk of failure during gait, for a patient with direct skeletal attachment of a femoral prosthesis, using finite element analysis (FEA). Material properties and loads were derived from subject-specific data and implant stability assumed secured by bone ingrowth into a porous implant surface. A simplified FEA was used to optimize the implant geometry with respect to load bearing capacity. The resulting geometry was then implemented in a subject-specific FE study. The results indicate that the risk of failure for the implant system is approximately three times greater than what can be expected for an intact femur. The main conclusion, based on the risk of failure factors calculated, is that it is likely that a porous-coated implant could be beneficial for osseointegrated fixation. It is also suggested that the proposed methodology can be used in future studies exploring the mechanical stability of osseointegrated fixation in the view of improving direct skeletal attachments for lower limb amputees.


Assuntos
Fêmur/cirurgia , Análise de Elementos Finitos , Marcha , Próteses e Implantes , Amputados , Análise de Falha de Equipamento , Fêmur/fisiologia , Humanos , Modelos Anatômicos , Osseointegração , Porosidade , Amplitude de Movimento Articular , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA