Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
EMBO J ; 33(12): 1365-82, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24837709

RESUMO

Tumour cells sustain their high proliferation rate through metabolic reprogramming, whereby cellular metabolism shifts from oxidative phosphorylation to aerobic glycolysis, even under normal oxygen levels. Hypoxia-inducible factor 1A (HIF1A) is a major regulator of this process, but its activation under normoxic conditions, termed pseudohypoxia, is not well documented. Here, using an integrative approach combining the first genome-wide mapping of chromatin binding for an endocytic adaptor, ARRB1, both in vitro and in vivo with gene expression profiling, we demonstrate that nuclear ARRB1 contributes to this metabolic shift in prostate cancer cells via regulation of HIF1A transcriptional activity under normoxic conditions through regulation of succinate dehydrogenase A (SDHA) and fumarate hydratase (FH) expression. ARRB1-induced pseudohypoxia may facilitate adaptation of cancer cells to growth in the harsh conditions that are frequently encountered within solid tumours. Our study is the first example of an endocytic adaptor protein regulating metabolic pathways. It implicates ARRB1 as a potential tumour promoter in prostate cancer and highlights the importance of metabolic alterations in prostate cancer.


Assuntos
Arrestinas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Neoplasias da Próstata/fisiopatologia , Imunoprecipitação da Cromatina , Imunofluorescência , Fumarato Hidratase/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Humanos , Immunoblotting , Imuno-Histoquímica , Espectroscopia de Ressonância Magnética , Masculino , Metabolômica , Neoplasias da Próstata/metabolismo , Interferência de RNA , Succinato Desidrogenase/metabolismo , Análise Serial de Tecidos , beta-Arrestina 1 , beta-Arrestinas
2.
J Pathol ; 236(4): 517-30, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25875424

RESUMO

Metabolic adaptation is considered an emerging hallmark of cancer, whereby cancer cells exhibit high rates of glucose consumption with consequent lactate production. To ensure rapid efflux of lactate, most cancer cells express high levels of monocarboxylate transporters (MCTs), which therefore may constitute suitable therapeutic targets. The impact of MCT inhibition, along with the clinical impact of altered cellular metabolism during prostate cancer (PCa) initiation and progression, has not been described. Using a large cohort of human prostate tissues of different grades, in silico data, in vitro and ex vivo studies, we demonstrate the metabolic heterogeneity of PCa and its clinical relevance. We show an increased glycolytic phenotype in advanced stages of PCa and its correlation with poor prognosis. Finally, we present evidence supporting MCTs as suitable targets in PCa, affecting not only cancer cell proliferation and survival but also the expression of a number of hypoxia-inducible factor target genes associated with poor prognosis. Herein, we suggest that patients with highly glycolytic tumours have poorer outcome, supporting the notion of targeting glycolytic tumour cells in prostate cancer through the use of MCT inhibitors.


Assuntos
Glicólise , Ácido Láctico/metabolismo , Terapia de Alvo Molecular , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Desenho de Fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Transgênicos , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Transportadores de Ácidos Monocarboxílicos/genética , Estadiamento de Neoplasias , Fenótipo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Interferência de RNA , Fatores de Tempo , Transfecção , Carga Tumoral
3.
J Cell Mol Med ; 19(4): 723-33, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25639644

RESUMO

Previous studies on monocarboxylate transporters expression in prostate cancer (PCa) have shown that monocarboxylate transporter 2 (MCT2) was clearly overexpressed in prostate malignant glands, pointing it out as a putative biomarker for PCa. However, its localization and possible role in PCa cells remained unclear. In this study, we demonstrate that MCT2 localizes mainly at peroxisomes in PCa cells and is able to take advantage of the peroxisomal transport machinery by interacting with Pex19. We have also shown an increase in MCT2 expression from non-malignant to malignant cells that was directly correlated with its peroxisomal localization. Upon analysis of the expression of several peroxisomal ß-oxidation proteins in PIN lesions and PCa cells from a large variety of human prostate samples, we suggest that MCT2 presence at peroxisomes is related to an increase in ß -oxidation levels which may be crucial for malignant transformation. Our results present novel evidence that may not only contribute to the study of PCa development mechanisms but also pinpoint novel targets for cancer therapy.


Assuntos
Transformação Celular Neoplásica/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Peroxissomos/metabolismo , Neoplasias da Próstata/metabolismo , Basigina/metabolismo , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Masculino , Proteínas de Membrana/metabolismo , Microscopia Confocal , Oxirredução , Próstata/citologia , Próstata/metabolismo , Neoplasias da Próstata/patologia , Ligação Proteica , Isoformas de Proteínas/metabolismo , Proteínas Repressoras/metabolismo
4.
BMC Cancer ; 14: 352, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24886074

RESUMO

BACKGROUND: In a malignant tumour, cancer cells are embedded in stromal cells, namely cancer-associated fibroblasts (CAFs). These CAFs are now accepted as important players in cancer dynamics, being involved in tumour growth and progression. Although there are various reports on the interaction between tumour and stromal cells, the clinico-pathological significance of this cross-talk is still largely unknown. In this study, we aimed to characterise the expression of key metabolic proteins involved in glucose transport, pyruvate/lactate shuttle system, glycolytic metabolism and fatty acid oxidation in CAFs and tumour cells in different stages of malignant transformation. We further aimed to contextualise the clinico-pathological significance of these protein expression profiles with reference to known prognostic indicators, including biochemical recurrence in pT stage. METHODS: Prostate tissues were obtained from 480 patients with a median age of 64 years following radical prostatectomy with no previous hormonal therapy. Tissues were analysed for the expression of several key metabolism-related proteins in glands and surrounding fibroblasts by immunohistochemistry. Reliable markers of prognosis such as pT stage and biochemical recurrence were assessed for each case. RESULTS: We observed that prostate cancer cells did not rely mainly on glycolytic metabolism, while there was a high expression of MCT4 and CAIX - in CAFs. This corroborates the hypothesis of the "Reverse Warburg effect" in prostate cancer, in which fibroblasts are under oxidative stress and express CAIX, an established hypoxia marker. We found that alterations in the expression of metabolism-related proteins were already evident in the early stages of malignant transformation, suggesting the continuing alteration of CAFs from an early stage. Additionally, and for the first time, we show that cases showing high MCT4 expression in CAFs with concomitant strong MCT1 expression in prostate cancer (PCa) cells are associated with poor clinical outcome, namely pT3 stage of the tumour. CONCLUSIONS: In summary, this work demonstrates for the first time the clinico-pathological significance of the lactate shuttle in prostate cancer. It also suggests that other alterations in CAFs may be useful prognostic factors, and further supports the use of MCT1/MCT4 as targets for PCa therapy.


Assuntos
Metabolismo Energético , Fibroblastos/química , Ácido Láctico/análise , Neoplasias da Próstata/química , Células Estromais/química , Transporte Biológico , Fibroblastos/patologia , Humanos , Calicreínas/sangue , Masculino , Pessoa de Meia-Idade , Transportadores de Ácidos Monocarboxílicos/análise , Proteínas Musculares/análise , Estadiamento de Neoplasias , Antígeno Prostático Específico/sangue , Prostatectomia , Neoplasias da Próstata/sangue , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Células Estromais/patologia , Simportadores/análise , Resultado do Tratamento
5.
Int J Mol Sci ; 15(10): 18333-48, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25314297

RESUMO

Metabolic changes during malignant transformation have been noted for many years in tumours. Otto Warburg first reported that cancer cells preferentially rely on glycolysis for energy production, even in the presence of oxygen, leading to the production of high levels of lactate. The crucial role of lactate efflux and exchange within the tumour microenvironment drew attention to monocarboxylate transporters (MCTs). MCTs have been recognized as promising targets in cancer therapy, and their expression was described in a large variety of tumours; however, studies showing how these isoforms contribute to the acquisition of the malignant phenotype are scarce and still unclear regarding prostate cancer. In this review, we focus on the role for MCTs in cell metabolism, supporting the development and progression of prostate cancer, and discuss the exploitation of the metabolic nature of prostate cancer for therapeutic and diagnostic purposes.


Assuntos
Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/metabolismo , Microambiente Tumoral , Animais , Metabolismo Energético , Glicólise , Humanos , Masculino , Terapia de Alvo Molecular , Transportadores de Ácidos Monocarboxílicos/análise , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia
6.
Prostate ; 73(7): 763-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23192371

RESUMO

BACKGROUND: Monocarboxylate transporter 2 (MCT2) is a transmembrane protein involved in the transport of monocarboxylates such as pyruvate and lactate. In a previous study we described overexpression of MCT2 in prostate carcinoma raising the hypothesis of using MCT2 as a possible biomarker in prostate cancer. With the present study we aimed to compare the pattern of expression of MCT2 and alpha-methylacyl-CoA racemase (AMACR), in prostate carcinoma, PIN lesions, non-neoplastic prostate tissue, and normal prostate and compare their sensitivity and specificity. Also, we wanted to evaluate the value of using MCT2 in combination with AMACR and the negative markers 34ßE12 or p63 to detect prostate cancer. METHODS: A total of 349 cases, including prostate carcinoma, non-neoplastic prostate tissue and PIN lesions, from radical prostatectomies were examined by immunohistochemistry for AMACR, MCT2, p63, and 34ßE12, using tissue microarrays (TMAs). Normal prostate from radical cystoprostatectomy was also studied. RESULTS: Our study revealed that MCT2, similarly to AMACR, was consistently expressed in prostate cancer regardless of the Gleason score. In combination with AMACR and p63 or 34ßE12, MCT2 helped to improve the diagnosis of prostate carcinoma. Also, overexpression of MCT2 as well as AMACR in PIN lesions may indicate the involvement of these two proteins in prostate cancer initiation. CONCLUSIONS: We provided evidence for the presence of MCT2 in prostate cancer, selectively labeling malignant glands. Importantly, assessment of MCT2 together with AMACR, along with the negative markers, highly increases the accuracy in prostate cancer diagnosis.


Assuntos
Transportadores de Ácidos Monocarboxílicos/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Racemases e Epimerases/metabolismo , Biomarcadores , Humanos , Imuno-Histoquímica , Masculino , Próstata/patologia , Análise Serial de Proteínas , Sensibilidade e Especificidade
7.
BMC Cancer ; 11: 312, 2011 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-21787388

RESUMO

BACKGROUND: Monocarboxylate transporters (MCTs) are transmembrane proteins involved in the transport of monocarboxylates across the plasma membrane, which appear to play an important role in solid tumours, however the role of MCTs in prostate cancer is largely unknown. The aim of the present work was to evaluate the clinico-pathological value of monocarboxylate transporters (MCTs) expression, namely MCT1, MCT2 and MCT4, together with CD147 and gp70 as MCT1/4 and MCT2 chaperones, respectively, in prostate carcinoma. METHODS: Prostate tissues were obtained from 171 patients, who performed radical prostatectomy and 14 patients who performed cystoprostatectomy. Samples and clinico-pathological data were retrieved and organized into tissue microarray (TMAs) blocks. Protein expression was evaluated by immunohistochemistry in neoplastic (n = 171), adjacent non-neoplastic tissues (n = 135), PIN lesions (n = 40) and normal prostatic tissue (n = 14). Protein expression was correlated with patients' clinicopathologic characteristics. RESULTS: In the present study, a significant increase of MCT2 and MCT4 expression in the cytoplasm of tumour cells and a significant decrease in both MCT1 and CD147 expression in prostate tumour cells was observed when compared to normal tissue. All MCT isoforms and CD147 were expressed in PIN lesions. Importantly, for MCT2 and MCT4 the expression levels in PIN lesions were between normal and tumour tissue, which might indicate a role for these MCTs in the malignant transformation. Associations were found between MCT1, MCT4 and CD147 expressions and poor prognosis markers; importantly MCT4 and CD147 overexpression correlated with higher PSA levels, Gleason score and pT stage, as well as with perineural invasion and biochemical recurrence. CONCLUSIONS: Our data provides novel evidence for the involvement of MCTs in prostate cancer. According to our results, we consider that MCT2 should be further explored as tumour marker and both MCT4 and CD147 as markers of poor prognosis in prostate cancer.


Assuntos
Basigina/biossíntese , Biomarcadores Tumorais/biossíntese , Transportadores de Ácidos Monocarboxílicos/biossíntese , Proteínas Musculares/biossíntese , Neoplasias da Próstata/metabolismo , Idoso , Humanos , Imuno-Histoquímica , Masculino , Glicoproteínas de Membrana/biossíntese , Pessoa de Meia-Idade , Chaperonas Moleculares , Prognóstico , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/patologia , Simportadores/biossíntese , Análise Serial de Tecidos
8.
Oxid Med Cell Longev ; 2020: 2148562, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411320

RESUMO

The incidence of prostate cancer (PCa) is increasing, and it is currently the second most frequent cause of death by cancer in men. Despite advancements in cancer therapies, new therapeutic approaches are still needed for treatment-refractory advanced metastatic PCa. Cross-species analysis presents a robust strategy for the discovery of new potential therapeutic targets. This strategy involves the integration of genomic data from genetically engineered mouse models (GEMMs) and human PCa datasets. Considering the role of antioxidant pathways in tumor initiation and progression, we searched oxidative stress-related genes for a potential therapeutic target for PCa. First, we analyzed RNA-sequencing data from Pb-Cre4; Ptenf/f mice and discovered an increase in sulfiredoxin (Srxn1) mRNA expression in high-grade prostatic intraepithelial neoplasia (PIN), well-differentiated adenocarcinoma (medium-stage tumors), and poor-differentiated adenocarcinoma (advanced-stage prostate tumors). The increase of SRXN1 protein expression was confirmed by immunohistochemistry in mouse prostate tumor paraffin samples. Analyses of human databases and prostate tissue microarrays demonstrated that SRXN1 is overexpressed in a subset of high-grade prostate tumors and correlates with aggressive PCa with worse prognosis and decreased survival. Analyses in vitro showed that SRXN1 expression is also higher in most PCa cell lines compared to normal cell lines. Furthermore, siRNA-mediated downregulation of SRXN1 led to decreased viability of PCa cells LNCaP. In conclusion, we identified the antioxidant enzyme SRXN1 as a potential therapeutic target for PCa. Our results suggest that the use of specific SRXN1 inhibitors may be an effective strategy for the adjuvant treatment of castration-resistant PCa with SRXN1 overexpression.


Assuntos
Terapia de Alvo Molecular , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Neoplasias da Próstata/patologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Gradação de Tumores , Invasividade Neoplásica , Metástase Neoplásica , Estadiamento de Neoplasias , Estresse Oxidativo/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Prognóstico , Próstata/patologia , Neoplasias da Próstata/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sobrevida
9.
Mol Cancer Res ; 17(2): 446-456, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30333152

RESUMO

Among prostate cancers containing Gleason pattern 4, cribriform morphology is associated with unfavorable clinicopathologic factors, but its genetic features and association with long-term outcomes are incompletely understood. In this study, genetic, transcriptional, and epigenetic features of invasive cribriform carcinoma (ICC) tumors were compared with non-cribriform Gleason 4 (NC4) in The Cancer Genome Atlas (TCGA) cohort. ICC (n = 164) had distinctive molecular features when compared with NC4 (n = 102). These include: (i) increased somatic copy number variations (SCNV), specifically deletions at 6q, 8p and 10q, which encompassed PTEN and MAP3K7 losses and gains at 3q; (ii) increased SPOP mut and ATMmut ; (iii) enrichment for mTORC1 and MYC pathways by gene expression; and (iv) increased methylation of selected genes. In addition, when compared with the metastatic prostate cancer, ICC clustered more closely to metastatic prostate cancer than NC4. Validation in clinical cohorts and genomically annotated murine models confirmed the association with SPOPmut (n = 38) and PTENloss (n = 818). The association of ICC with lethal disease was evaluated in the Health Professionals Follow-up Study (HPFS) and Physicians' Health Study (PHS) prospective prostate cancer cohorts (median follow-up, 13.4 years; n = 818). Patients with ICC were more likely to develop lethal cancer [HR, 1.62; 95% confidence interval (CI), 1.05-2.49], independent from Gleason score (GS). IMPLICATIONS: ICC has a distinct molecular phenotype that resembles metastatic prostate cancer and is associated with progression to lethal disease.


Assuntos
Adenocarcinoma/genética , Epigenômica/métodos , Neoplasias da Próstata/genética , Adenocarcinoma/patologia , Animais , Humanos , Masculino , Camundongos , Neoplasias da Próstata/patologia
10.
Cancer Epidemiol Biomarkers Prev ; 27(2): 201-207, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29141848

RESUMO

Background: The proto-oncogene MYC is implicated in prostate cancer progression. Whether MYC tumor expression at the protein or mRNA level is associated with poorer prognosis has not been well studied.Methods: We conducted a cohort study including 634 men from the Physicians' Health Study and Health Professionals Follow-up Study treated with radical prostatectomy for prostate cancer in 1983-2004 and followed up for a median of 13.7 years. MYC protein expression was evaluated using IHC, and we used Cox regression to calculate HRs and 95% confidence intervals (CIs) of its association with lethal prostate cancer (distant metastases/prostate cancer-related death). We assessed the association between MYC mRNA expression and lethal prostate cancer in a case-control study, including 113 lethal cases and 291 indolent controls.Results: MYC nuclear protein expression was present in 97% of tumors. MYC protein expression was positively correlated with tumor proliferation rate (r = 0.37; P < 0.001) and negatively correlated with apoptotic count (r = -0.17; P < 0.001). There were no significant associations between MYC protein expression and stage, grade, or PSA level at diagnosis. The multivariable HR for lethal prostate cancer among men in the top versus bottom quartile of MYC protein expression was 1.09 (95% CI, 0.50-2.35). There was no significant association between MYC mRNA expression and lethal prostate cancer.Conclusions: Neither MYC protein overexpression nor MYC mRNA overexpression are strong prognostic markers in men treated with radical prostatectomy for prostate cancer.Impact: This is the largest study to examine the prognostic role of MYC protein and mRNA expression in prostate cancer. Cancer Epidemiol Biomarkers Prev; 27(2); 201-7. ©2017 AACR.


Assuntos
Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/metabolismo , Adulto , Idoso , Biomarcadores Tumorais/genética , Seguimentos , Genes myc , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Prostatectomia , Neoplasias da Próstata/genética , Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/cirurgia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myc/genética
11.
EMBO Mol Med ; 10(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29437778

RESUMO

Genetically engineered mouse models of cancer can be used to filter genome-wide expression datasets generated from human tumours and to identify gene expression alterations that are functionally important to cancer development and progression. In this study, we have generated RNAseq data from tumours arising in two established mouse models of prostate cancer, PB-Cre/PtenloxP/loxP and p53loxP/loxPRbloxP/loxP, and integrated this with published human prostate cancer expression data to pinpoint cancer-associated gene expression changes that are conserved between the two species. To identify potential therapeutic targets, we then filtered this information for genes that are either known or predicted to be druggable. Using this approach, we revealed a functional role for the kinase MELK as a driver and potential therapeutic target in prostate cancer. We found that MELK expression was required for cell survival, affected the expression of genes associated with prostate cancer progression and was associated with biochemical recurrence.


Assuntos
Terapia de Alvo Molecular , Neoplasias da Próstata/terapia , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Progressão da Doença , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genoma , Humanos , Masculino , Camundongos , Naftiridinas/farmacologia , Invasividade Neoplásica , Fenótipo , Fosforilação/efeitos dos fármacos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Especificidade da Espécie , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Estatmina/metabolismo , Transcriptoma/genética
12.
Oncotarget ; 7(20): 28891-902, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27049720

RESUMO

Prostate cancer (PCa) is the most commonly diagnosed neoplasm and the second leading cause of cancer-related deaths in men. Acquisition of resistance to conventional therapy is a major problem for PCa patient management. Several mechanisms have been described to promote therapy resistance in PCa, such as androgen receptor (AR) activation, epithelial-to-mesenchymal transition (EMT), acquisition of stem cell properties and neuroendocrine transdifferentiation (NEtD). Recently, we identified Brachyury as a new biomarker of PCa aggressiveness and poor prognosis. In the present study we aimed to assess the role of Brachyury in PCa therapy resistance. We showed that Brachyury overexpression in prostate cancer cells lines increased resistance to docetaxel and cabazitaxel drugs, whereas Brachyury abrogation induced decrease in therapy resistance. Through ChiP-qPCR assays we further demonstrated that Brachyury is a direct regulator of AR expression as well as of the biomarker AMACR and the mesenchymal markers Snail and Fibronectin. Furthermore, in vitro Brachyury was also able to increase EMT and stem properties. By in silico analysis, clinically human Brachyury-positive PCa samples were associated with biomarkers of PCa aggressiveness and therapy resistance, including PTEN loss, and expression of NEtD markers, ERG and Bcl-2. Taken together, our results indicate that Brachyury contributes to tumor chemotherapy resistance, constituting an attractive target for advanced PCa patients.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Proteínas Fetais/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Proteínas com Domínio T/metabolismo , Linhagem Celular Tumoral , Humanos , Masculino , Neoplasias da Próstata/metabolismo
13.
J Natl Cancer Inst ; 108(5)2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26657335

RESUMO

BACKGROUND: The androgen receptor (AR) is a major drug target in prostate cancer (PCa). We profiled the AR-regulated kinome to identify clinically relevant and druggable effectors of AR signaling. METHODS: Using genome-wide approaches, we interrogated all AR regulated kinases. Among these, choline kinase alpha (CHKA) expression was evaluated in benign (n = 195), prostatic intraepithelial neoplasia (PIN) (n = 153) and prostate cancer (PCa) lesions (n = 359). We interrogated how CHKA regulates AR signaling using biochemical assays and investigated androgen regulation of CHKA expression in men with PCa, both untreated (n = 20) and treated with an androgen biosynthesis inhibitor degarelix (n = 27). We studied the effect of CHKA inhibition on the PCa transcriptome using RNA sequencing and tested the effect of CHKA inhibition on cell growth, clonogenic survival and invasion. Tumor xenografts (n = 6 per group) were generated in mice using genetically engineered prostate cancer cells with inducible CHKA knockdown. Data were analyzed with χ(2) tests, Cox regression analysis, and Kaplan-Meier methods. All statistical tests were two-sided. RESULTS: CHKA expression was shown to be androgen regulated in cell lines, xenografts, and human tissue (log fold change from 6.75 to 6.59, P = .002) and was positively associated with tumor stage. CHKA binds directly to the ligand-binding domain (LBD) of AR, enhancing its stability. As such, CHKA is the first kinase identified as an AR chaperone. Inhibition of CHKA repressed the AR transcriptional program including pathways enriched for regulation of protein folding, decreased AR protein levels, and inhibited the growth of PCa cell lines, human PCa explants, and tumor xenografts. CONCLUSIONS: CHKA can act as an AR chaperone, providing, to our knowledge, the first evidence for kinases as molecular chaperones, making CHKA both a marker of tumor progression and a potential therapeutic target for PCa.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Colina Quinase/metabolismo , Chaperonas Moleculares , Terapia de Alvo Molecular/métodos , Prostatectomia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/enzimologia , Receptores Androgênicos/metabolismo , Transdução de Sinais , Idoso , Animais , Colina Quinase/antagonistas & inibidores , Colina Quinase/genética , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Modelos de Riscos Proporcionais , Prostatectomia/métodos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Análise de Sequência de DNA , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Oncotarget ; 6(25): 21675-84, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26035357

RESUMO

Monocarboxylate Transporter 2 (MCT2) is a major pyruvate transporter encoded by the SLC16A7 gene. Recent studies pointed to a consistent overexpression of MCT2 in prostate cancer (PCa) suggesting MCT2 as a putative biomarker and molecular target. Despite the importance of this observation the mechanisms involved in MCT2 regulation are unknown. Through an integrative analysis we have discovered that selective demethylation of an internal SLC16A7/MCT2 promoter is a recurrent event in independent PCa cohorts. This demethylation is associated with expression of isoforms differing only in 5'-UTR translational control motifs, providing one contributing mechanism for MCT2 protein overexpression in PCa. Genes co-expressed with SLC16A7/MCT2 also clustered in oncogenic-related pathways and effectors of these signalling pathways were found to bind at the SLC16A7/MCT2 gene locus. Finally, MCT2 knock-down attenuated the growth of PCa cells. The present study unveils an unexpected epigenetic regulation of SLC16A7/MCT2 isoforms and identifies a link between SLC16A7/MCT2, Androgen Receptor (AR), ETS-related gene (ERG) and other oncogenic pathways in PCa. These results underscore the importance of combining data from epigenetic, transcriptomic and protein level changes to allow more comprehensive insights into the mechanisms underlying protein expression, that in our case provide additional weight to MCT2 as a candidate biomarker and molecular target in PCa.


Assuntos
Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neoplasias da Próstata/metabolismo , Regiões 5' não Traduzidas , Motivos de Aminoácidos , Estudos de Coortes , Humanos , Imuno-Histoquímica , Masculino , Microscopia Confocal , Metástase Neoplásica , Fenótipo , Biossíntese de Proteínas , RNA Interferente Pequeno/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Regulador Transcricional ERG
15.
Clin Cancer Res ; 20(18): 4949-61, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25009296

RESUMO

PURPOSE: Successful therapy of patients with prostate cancer is highly dependent on reliable diagnostic and prognostic biomarkers. Brachyury is considered a negative prognostic factor in colon and lung cancer; however, there are no reports on Brachyury's expression in prostate cancer. EXPERIMENTAL DESIGN: In this study, we aimed to assess the impact of Brachyury expression in prostate tumorigenesis using a large series of human prostate samples comprising benign tissue, prostate intraepithelial neoplasia (PIN) lesions, localized tumor, and metastatic tissues. The results obtained were compared with what can be inferred from the Oncomine database. In addition, multiple in vitro models of prostate cancer were used to dissect the biologic role of Brachyury in prostate cancer progression. RESULTS: We found that Brachyury is significantly overexpressed in prostate cancer and metastatic tumors when compared with normal tissues, both at protein and at mRNA levels. Brachyury expression in the cytoplasm correlates with highly aggressive tumors, whereas the presence of Brachyury in the nucleus is correlated with tumor invasion. We found that Brachyury-positive cells present higher viability, proliferation, migration, and invasion rates than Brachyury-negative cells. Microarray analysis further showed that genes co-expressed with Brachyury are clustered in oncogenic-related pathways, namely cell motility, cell-cycle regulation, and cell metabolism. CONCLUSIONS: Collectively, the present study suggests that Brachyury plays an important role in prostate cancer aggressiveness and points, for the first time, to Brachyury as a significant predictor of poor prostate cancer prognosis. Our work paves the way for future studies assessing Brachyury as a possible prostate cancer therapeutic target.


Assuntos
Adenocarcinoma/patologia , Biomarcadores Tumorais/análise , Proteínas Fetais/biossíntese , Neoplasias da Próstata/patologia , Proteínas com Domínio T/biossíntese , Idoso , Western Blotting , Linhagem Celular Tumoral , Proteínas Fetais/análise , Humanos , Imuno-Histoquímica , Masculino , Microscopia de Fluorescência , Pessoa de Meia-Idade , Prognóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas com Domínio T/análise , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA