Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Parasitol ; 123(1): 73-80, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19520077

RESUMO

Chagas disease remains a serious public health problem in several Latin American countries. New chemotherapy is urgently needed since current drugs are limited in efficacy and exhibit undesirable side effects. Aromatic diamidines and analogs are well known anti-parasitic agents and in this study, we have evaluated the in vitro trypanocidal effect of several different heterocyclic cationic compounds, including diamidines (DB1195, DB1196 and DB1345), a monoamidine (DB824), an arylimidamide (DB613A) and a guanylhydrazone (DB1080) against amastigotes and bloodstream trypomastigotes of Trypanosoma cruzi, the etiological agent of Chagas disease. Our present findings showed that all compounds exerted, at low-micromolar doses, a trypanocidal effect upon both intracellular parasites and bloodstream trypomastigotes of T. cruzi. The activity of DB1195, DB1345, DB824 and DB1080 against bloodstream forms was reduced when these compounds were assayed in the presence of mouse blood possibly due to their association with plasma constituents and/or due to metabolic instability of the compounds. However, trypanocidal effects of DB613A and DB1196 were not affected by plasma constituents, suggesting their potential application in the prophylaxis of banked blood. In addition, potency and selectivity of DB613A, towards intracellular parasites, corroborate previous results that demonstrated the highly promising activity of arylimidamides against this parasite, which justify further studies in experimental models of T. cruzi infection.


Assuntos
Amidinas/farmacologia , Compostos Heterocíclicos/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Concentração Inibidora 50 , Testes de Sensibilidade Parasitária , Células Vero
2.
Elife ; 72018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29851380

RESUMO

Transport of biologically active molecules across tight epithelial barriers is a major challenge preventing therapeutic peptides from oral drug delivery. Here, we identify a set of synthetic glycosphingolipids that harness the endogenous process of intracellular lipid-sorting to enable mucosal absorption of the incretin hormone GLP-1. Peptide cargoes covalently fused to glycosphingolipids with ceramide domains containing C6:0 or smaller fatty acids were transported with 20-100-fold greater efficiency across epithelial barriers in vitro and in vivo. This was explained by structure-function of the ceramide domain in intracellular sorting and by the affinity of the glycosphingolipid species for insertion into and retention in cell membranes. In mice, GLP-1 fused to short-chain glycosphingolipids was rapidly and systemically absorbed after gastric gavage to affect glucose tolerance with serum bioavailability comparable to intraperitoneal injection of GLP-1 alone. This is unprecedented for mucosal absorption of therapeutic peptides, and defines a technology with many other clinical applications.


Assuntos
Absorção Fisiológica , Glicoesfingolipídeos/metabolismo , Mucosa/metabolismo , Peptídeos/uso terapêutico , Animais , Transporte Biológico Ativo , Glicemia/metabolismo , Núcleo Celular/metabolismo , Ceramidas/química , Cães , Células Epiteliais/metabolismo , Gangliosídeo G(M1)/química , Gangliosídeo G(M1)/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Células Madin Darby de Rim Canino , Masculino , Camundongos Endogâmicos C57BL , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Reprodutibilidade dos Testes , Soluções , Relação Estrutura-Atividade , Transcitose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA