Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nucleic Acids Res ; 52(12): 7305-7320, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38842936

RESUMO

The SorC family of transcriptional regulators plays a crucial role in controlling the carbohydrate metabolism and quorum sensing. We employed an integrative approach combining X-ray crystallography and cryo-electron microscopy to investigate architecture and functional mechanism of two prototypical representatives of two sub-classes of the SorC family: DeoR and CggR from Bacillus subtilis. Despite possessing distinct DNA-binding domains, both proteins form similar tetrameric assemblies when bound to their respective DNA operators. Structural analysis elucidates the process by which the CggR-regulated gapA operon is derepressed through the action of two effectors: fructose-1,6-bisphosphate and newly confirmed dihydroxyacetone phosphate. Our findings provide the first comprehensive understanding of the DNA binding mechanism of the SorC-family proteins, shedding new light on their functional characteristics.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Microscopia Crioeletrônica , Modelos Moleculares , Proteínas Repressoras , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Cristalografia por Raios X , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Ligação Proteica , Multimerização Proteica , DNA/química , DNA/metabolismo , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica , DNA Bacteriano/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Óperon/genética , Frutosedifosfatos
2.
J Biol Chem ; 299(3): 102970, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36736427

RESUMO

Fasciolosis is a worldwide parasitic disease of ruminants and an emerging human disease caused by the liver fluke Fasciola hepatica. The cystatin superfamily of cysteine protease inhibitors is composed of distinct families of intracellular stefins and secreted true cystatins. FhCyLS-2 from F. hepatica is an unusual member of the superfamily, where our sequence and 3D structure analyses in this study revealed that it combines characteristics of both families. The protein architecture demonstrates its relationship to stefins, but FhCyLS-2 also contains the secretion signal peptide and disulfide bridges typical of true cystatins. The secretion status was confirmed by detecting the presence of FhCyLS-2 in excretory/secretory products, supported by immunolocalization. Our high-resolution crystal structure of FhCyLS-2 showed a distinct disulfide bridging pattern and functional reactive center. We determined that FhCyLS-2 is a broad specificity inhibitor of cysteine cathepsins from both the host and F. hepatica, suggesting a dual role in the regulation of exogenous and endogenous proteolysis. Based on phylogenetic analysis that identified several FhCyLS-2 homologues in liver/intestinal foodborne flukes, we propose a new group within the cystatin superfamily called cystatin-like stefins.


Assuntos
Cistatinas , Fasciola hepatica , Animais , Sequência de Aminoácidos , Cistatinas/genética , Cistatinas/química , Dissulfetos , Fasciola hepatica/genética , Filogenia , Proteínas de Helminto/química , Proteínas de Helminto/genética
3.
J Biol Chem ; 299(12): 105482, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37992806

RESUMO

Bromodomains (BDs) regulate gene expression by recognizing protein motifs containing acetyllysine. Although originally characterized as histone-binding proteins, it has since become clear that these domains interact with other acetylated proteins, perhaps most prominently transcription factors. The likely transient nature and low stoichiometry of such modifications, however, has made it challenging to fully define the interactome of any given BD. To begin to address this knowledge gap in an unbiased manner, we carried out mRNA display screens against a BD-the N-terminal BD of BRD3-using peptide libraries that contained either one or two acetyllysine residues. We discovered peptides with very strong consensus sequences and with affinities that are significantly higher than typical BD-peptide interactions. X-ray crystal structures also revealed modes of binding that have not been seen with natural ligands. Intriguingly, however, our sequences are not found in the human proteome, perhaps suggesting that strong binders to BDs might have been selected against during evolution.


Assuntos
Proteoma , Fatores de Transcrição , Humanos , Proteoma/metabolismo , Fatores de Transcrição/metabolismo , Domínios Proteicos , Motivos de Aminoácidos , Peptídeos/metabolismo , Ligação Proteica , Acetilação
4.
J Biol Chem ; 296: 100797, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34019879

RESUMO

Bacterial methionine biosynthesis can take place by either the trans-sulfurylation route or direct sulfurylation. The enzymes responsible for trans-sulfurylation have been characterized extensively because they occur in model organisms such as Escherichia coli. However, direct sulfurylation is actually the predominant route for methionine biosynthesis across the phylogenetic tree. In this pathway, most bacteria use an O-acetylhomoserine aminocarboxypropyltransferase (MetY) to catalyze the formation of homocysteine from O-acetylhomoserine and bisulfide. Despite the widespread distribution of MetY, this pyridoxal 5'-phosphate-dependent enzyme remains comparatively understudied. To address this knowledge gap, we have characterized the MetY from Thermotoga maritima (TmMetY). At its optimal temperature of 70 °C, TmMetY has a turnover number (apparent kcat = 900 s-1) that is 10- to 700-fold higher than the three other MetY enzymes for which data are available. We also present crystal structures of TmMetY in the internal aldimine form and, fortuitously, with a ß,γ-unsaturated ketimine reaction intermediate. This intermediate is identical to that found in the catalytic cycle of cystathionine γ-synthase (MetB), which is a homologous enzyme from the trans-sulfurylation pathway. By comparing the TmMetY and MetB structures, we have identified Arg270 as a critical determinant of specificity. It helps to wall off the active site of TmMetY, disfavoring the binding of the first MetB substrate, O-succinylhomoserine. It also ensures a strict specificity for bisulfide as the second substrate of MetY by occluding the larger MetB substrate, cysteine. Overall, this work illuminates the subtle structural mechanisms by which homologous pyridoxal 5'-phosphate-dependent enzymes can effect different catalytic, and therefore metabolic, outcomes.


Assuntos
Proteínas de Bactérias/metabolismo , Metionina/metabolismo , Thermotoga maritima/metabolismo , Proteínas de Bactérias/química , Vias Biossintéticas , Cristalografia por Raios X , Cinética , Modelos Moleculares , Thermotoga maritima/química
5.
Bioorg Med Chem ; 27(13): 2935-2947, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31128993

RESUMO

This study focuses on design, synthesis and in vitro evaluation of inhibitory potency of two series of sialylmimetic that target an exosite ("150-cavity") adjacent to the active site of influenza neuraminidases from A/California/07/2009 (H1N1) pandemic strain and A/chicken/Nakorn-Patom/Thailand/CU-K2-2004 (H5N1). The structure-activity analysis as well as 3-D structure of the complex of parental compound with the pandemic neuraminidase p09N1 revealed high flexibility of the 150-cavity towards various modification of the neuraminidase inhibitors. Furthermore, our comparison of two methods for inhibition constant determination performed at slightly different pH values suggest that the experimental conditions of the measurement could dramatically influence the outcome of the analysis in the compound-dependent manner. Therefore, previously reported Ki values determined at non-physiological pH should be carefully scrutinized.


Assuntos
Vírus da Influenza A Subtipo H1N1/patogenicidade , Virus da Influenza A Subtipo H5N1/patogenicidade , Neuraminidase/uso terapêutico , Oseltamivir/uso terapêutico , Humanos , Neuraminidase/farmacologia , Oseltamivir/farmacologia
6.
Biochem J ; 475(23): 3847-3860, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30404922

RESUMO

Influenza neuraminidase is responsible for the escape of new viral particles from the infected cell surface. Several neuraminidase inhibitors are used clinically to treat patients or stockpiled for emergencies. However, the increasing development of viral resistance against approved inhibitors has underscored the need for the development of new antivirals effective against resistant influenza strains. A facile, sensitive, and inexpensive screening method would help achieve this goal. Recently, we described a multiwell plate-based DNA-linked inhibitor antibody assay (DIANA). This highly sensitive method can quantify femtomolar concentrations of enzymes. DIANA also has been applied to high-throughput enzyme inhibitor screening, allowing the evaluation of inhibition constants from a single inhibitor concentration. Here, we report the design, synthesis, and structural characterization of a tamiphosphor derivative linked to a reporter DNA oligonucleotide for the development of a DIANA-type assay to screen potential influenza neuraminidase inhibitors. The neuraminidase is first captured by an immobilized antibody, and the test compound competes for binding to the enzyme with the oligo-linked detection probe, which is then quantified by qPCR. We validated this novel assay by comparing it with the standard fluorometric assay and demonstrated its usefulness for sensitive neuraminidase detection as well as high-throughput screening of potential new neuraminidase inhibitors.


Assuntos
DNA/química , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Oseltamivir/análogos & derivados , Ácidos Fosforosos/química , Antivirais/química , Antivirais/farmacologia , Inibidores Enzimáticos/química , Humanos , Vírus da Influenza A/enzimologia , Vírus da Influenza A/fisiologia , Influenza Humana/tratamento farmacológico , Influenza Humana/enzimologia , Influenza Humana/virologia , Neuraminidase/antagonistas & inibidores , Neuraminidase/metabolismo , Oseltamivir/química , Reprodutibilidade dos Testes , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo
7.
BMC Biol ; 14(1): 91, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27756303

RESUMO

BACKGROUND: Relapsed acute lymphoblastic leukemia (ALL) is one of the main causes of mortality in childhood malignancies. Previous genetic studies demonstrated that chemoresistant ALL is driven by activating mutations in NT5C2, the gene encoding cytosolic 5´-nucleotidase (cN-II). However, molecular mechanisms underlying this hyperactivation are still unknown. Here, we present kinetic and structural properties of cN-II variants that represent 75 % of mutated alleles in patients who experience relapsed ALL (R367Q, R238W and L375F). RESULTS: Enzyme kinetics measurements revealed that the mutants are consitutively active without need for allosteric activators. This shows that hyperactivity is not caused by a direct catalytic effect but rather by misregulation of cN-II. X-ray crystallography combined with mass spectrometry-based techniques demonstrated that this misregulation is driven by structural modulation of the oligomeric interface within the cN-II homotetrameric assembly. These specific conformational changes are shared between the studied variants, despite the relatively random spatial distribution of the mutations. CONCLUSIONS: These findings define a common molecular mechanism for cN-II hyperactivity, which provides a solid basis for targeted therapy of leukemia. Our study highlights the cN-II oligomerization interface as an attractive pharmacological target.


Assuntos
5'-Nucleotidase/genética , Regulação Leucêmica da Expressão Gênica , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , 5'-Nucleotidase/metabolismo , Alelos , Clonagem Molecular , Cristalografia por Raios X , Humanos , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimologia , Conformação Proteica , Recidiva
8.
Protein Expr Purif ; 109: 7-13, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25623399

RESUMO

Lectin-like transcript 1 (LLT1, gene clec2d) was identified to be a ligand for the single human NKR-P1 receptor present on NK and NK-T lymphocytes. Naturally, LLT1 is expressed on the surface of NK cells, stimulating IFN-γ production, and is up-regulated upon activation of other immune cells, e.g. TLR-stimulated dendritic cells and B cells or T cell receptor-activated T cells. While in normal tissues LLT1:NKR-P1 interaction (representing an alternative "missing-self" recognition system) play an immunomodulatory role in regulation of crosstalk between NK and antigen presenting cells, LLT1 is upregulated in glioblastoma cells, one of the most lethal tumors, where it acts as a mediator of immune escape of glioma cells. Here we report transient expression and characterization of soluble His176Cys mutant of LLT1 ectodomain in an eukaryotic expression system of human suspension-adapted HEK293S GnTI(-) cell line with uniform N-glycans. The His176Cys mutation is critical for C-type lectin-like domain stability, leading to the reconstruction of third canonical disulfide bridge in LLT1, as shown by mass spectrometry. Purified soluble LLT1 is homogeneous, deglycosylatable and forms a non-covalent homodimer whose dimerization is not dependent on presence of its N-glycans. As a part of production of soluble LLT1, we have adapted HEK293S GnTI(-) cell line to growth in suspension in media facilitating transient transfection and optimized novel high cell density transfection protocol, greatly enhancing protein yields. This transfection protocol is generally applicable for protein production within this cell line, especially for protein crystallography.


Assuntos
Células Matadoras Naturais/metabolismo , Lectinas Tipo C/isolamento & purificação , Lectinas Tipo C/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Transfecção/métodos , Sequência de Aminoácidos , Cristalização , DNA/metabolismo , Dissulfetos/metabolismo , Glicosilação , Células HEK293 , Humanos , Lectinas Tipo C/química , Dados de Sequência Molecular , Polietilenoimina/química , Polissacarídeos/metabolismo , Dobramento de Proteína , Multimerização Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Solubilidade , Soluções
9.
J Enzyme Inhib Med Chem ; 30(1): 63-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24506201

RESUMO

Human mitochondrial 5'(3')-deoxyribonucleotidase (mdN) catalyzes dephosphorylation of nucleoside monophosphates, and thus helps maintain homeostasis of deoxynucleosides required for mitochondrial DNA synthesis. Mature mdN is a 23-kDa dimeric protein with highest expression levels in the heart, brain and skeletal muscle. We have identified an alternative splice variant of the mdN gene containing an 18-nucleotide insertion encoding 6 amino acids (GKWPAT) at the 3'-end of the penultimate exon 4. We recombinantly expressed this enzyme variant and characterized its biochemical and kinetic properties as well as its three-dimensional structure. Our high-resolution (1.27 Å) crystal structure revealed that the insertion forms a loop located in the vicinity of the active site pocket and affects enzyme kinetic parameters as well as protein thermal stability.


Assuntos
5'-Nucleotidase/química , Processamento Alternativo , Proteínas Mitocondriais/química , 5'-Nucleotidase/genética , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Éxons , Expressão Gênica , Humanos , Isoenzimas/química , Isoenzimas/genética , Cinética , Proteínas Mitocondriais/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Insercional , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
10.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 461-70, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24531480

RESUMO

The human 5'(3')-deoxyribonucleotidases catalyze the dephosphorylation of deoxyribonucleoside monophosphates to the corresponding deoxyribonucleosides and thus help to maintain the balance between pools of nucleosides and nucleotides. Here, the structures of human cytosolic deoxyribonucleotidase (cdN) at atomic resolution (1.08 Å) and mitochondrial deoxyribonucleotidase (mdN) at near-atomic resolution (1.4 Å) are reported. The attainment of an atomic resolution structure allowed interatomic distances to be used to assess the probable protonation state of the phosphate anion and the side chains in the enzyme active site. A detailed comparison of the cdN and mdN active sites allowed the design of a cdN-specific inhibitor.


Assuntos
Desoxirribonucleotídeos/química , Inibidores Enzimáticos/química , Isoenzimas/química , Nucleotidases/química , Organofosfonatos/química , Fosfatos/química , Domínio Catalítico , Cristalografia por Raios X , Citosol/química , Citosol/enzimologia , Desenho de Fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Células Eucarióticas/química , Células Eucarióticas/enzimologia , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Mitocôndrias/química , Mitocôndrias/enzimologia , Modelos Moleculares , Simulação de Acoplamento Molecular , Nucleotidases/antagonistas & inibidores , Nucleotidases/genética , Especificidade de Órgãos , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Relação Estrutura-Atividade
11.
Org Biomol Chem ; 12(40): 7971-82, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25178098

RESUMO

This work describes novel in vitro inhibitors of human mitochondrial (mdN) and cytosolic (cdN) 5'(3')-deoxynucleotidases. We designed a series of derivatives of the lead compound (S)-1-[2-deoxy-3,5-O-(phosphonobenzylidene)-ß-d-threo-pentofuranosyl]thymine bearing various substituents in the para position of the benzylidene moiety. Detailed kinetic study revealed that certain para substituents increase the inhibitory potency (iodo derivative; K = 2.71 µM) and some induce a shift in selectivity toward cdN (carboxy derivative, K = 11.60 µM; iodoxy derivative, K = 6.60 µM). Crystal structures of mdN in complex with three of these compounds revealed that various para substituents lead to two alternative inhibitor binding modes within the enzyme active site. Two binding modes were also identified for cdN complexes by heteronuclear NMR spectroscopy.


Assuntos
5'-Nucleotidase/antagonistas & inibidores , Citosol/enzimologia , Inibidores Enzimáticos/farmacologia , Mitocôndrias/enzimologia , Organofosfonatos/farmacologia , 5'-Nucleotidase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Conformação Molecular , Organofosfonatos/síntese química , Organofosfonatos/química , Relação Estrutura-Atividade
12.
Bioorg Med Chem ; 22(15): 4099-108, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24954515

RESUMO

Glutamate carboxypeptidase II (GCPII), also known as prostate specific membrane antigen (PSMA), is an established prostate cancer marker and is considered a promising target for specific anticancer drug delivery. Low-molecular-weight inhibitors of GCPII are advantageous specific ligands for this purpose. However, they must be modified with a linker to enable connection of the ligand with an imaging molecule, anticancer drug, and/or nanocarrier. Here, we describe a structure-activity relationship (SAR) study of GCPII inhibitors with linkers suitable for imaging and drug delivery. Structure-assisted inhibitor design and targeting of a specific GCPII exosite resulted in a 7-fold improvement in Ki value compared to the parent structure. X-ray structural analysis of the inhibitor series led to the identification of several inhibitor binding modes. We also optimized the length of the inhibitor linker for effective attachment to a biotin-binding molecule and showed that the optimized inhibitor could be used to target nanoparticles to cells expressing GCPII.


Assuntos
Portadores de Fármacos/química , Glutamato Carboxipeptidase II/antagonistas & inibidores , Inibidores de Proteases/química , Ureia/análogos & derivados , Sítios de Ligação , Domínio Catalítico , Linhagem Celular Tumoral , Desenho de Fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glutamato Carboxipeptidase II/genética , Glutamato Carboxipeptidase II/metabolismo , Humanos , Cinética , Simulação de Dinâmica Molecular , Nanopartículas/química , Inibidores de Proteases/síntese química , Inibidores de Proteases/toxicidade , Ligação Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Ureia/síntese química , Ureia/toxicidade
13.
J Med Chem ; 66(10): 6652-6681, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37134237

RESUMO

Purine nucleoside phosphorylase (PNP) is a well-known molecular target with potential therapeutic applications in the treatment of T-cell malignancies and/or bacterial/parasitic infections. Here, we report the design, development of synthetic methodology, and biological evaluation of a series of 30 novel PNP inhibitors based on acyclic nucleoside phosphonates bearing a 9-deazahypoxanthine nucleobase. The strongest inhibitors exhibited IC50 values as low as 19 nM (human PNP) and 4 nM (Mycobacterium tuberculosis (Mt) PNP) and highly selective cytotoxicity toward various T-lymphoblastic cell lines with CC50 values as low as 9 nM. No cytotoxic effect was observed on other cancer cell lines (HeLa S3, HL60, HepG2) or primary PBMCs for up to 10 µM. We report the first example of the PNP inhibitor exhibiting over 60-fold selectivity for the pathogenic enzyme (MtPNP) over hPNP. The results are supported by a crystallographic study of eight enzyme-inhibitor complexes and by ADMET profiling in vitro and in vivo.


Assuntos
Inibidores Enzimáticos , Purina-Núcleosídeo Fosforilase , Humanos , Purina-Núcleosídeo Fosforilase/metabolismo , Inibidores Enzimáticos/química , Cristalografia
14.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 2): 176-85, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22281747

RESUMO

In Bacillus subtilis, the arabinose repressor AraR negatively controls the expression of genes in the metabolic pathway of arabinose-containing polysaccharides. The protein is composed of two domains of different phylogenetic origin and function: an N-terminal DNA-binding domain belonging to the GntR family and a C-terminal effector-binding domain that shows similarity to members of the GalR/LacI family. The crystal structure of the C-terminal effector-binding domain of AraR in complex with the effector L-arabinose has been determined at 2.2 Šresolution. The L-arabinose binding affinity was characterized by isothermal titration calorimetry and differential scanning fluorimetry; the K(d) value was 8.4 ± 0.4 µM. The effect of L-arabinose on the protein oligomeric state was investigated in solution and detailed analysis of the crystal identified a dimer organization which is distinctive from that of other members of the GalR/LacI family.


Assuntos
Bacillus subtilis/química , Proteínas de Bactérias/química , Proteínas Repressoras/química , Arabinose/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Repressoras/metabolismo
15.
J Enzyme Inhib Med Chem ; 27(1): 160-5, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22146051

RESUMO

Secreted aspartic proteases (Saps) are extracellular proteolytic enzymes that enhance the virulence of Candida pathogens. These enzymes therefore represent possible targets for therapeutic drug design. Saps are inhibited by nanomolar concentrations of the classical inhibitor of aspartic proteases pepstatin A and also by the inhibitors of the HIV protease, but with the K(i) of micromolar values or higher. To contribute to the discussion regarding whether HIV protease inhibitors can act against opportunistic mycoses by the inhibition of Saps, we determined the structure of Sapp1p from Candida parapsilosis in complex with ritonavir (RTV), a clinically used inhibitor of the HIV protease. The crystal structure refined at resolution 2.4 Å proved binding of RTV into the active site of Sapp1p and provided the structural information necessary to evaluate the stability and specificity of the protein-inhibitor interaction.


Assuntos
Ácido Aspártico Endopeptidases/química , Candida/enzimologia , Proteínas Fúngicas/química , Inibidores da Protease de HIV/química , Ritonavir/química , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Cristalografia por Raios X , Proteínas Fúngicas/antagonistas & inibidores , Inibidores da Protease de HIV/farmacologia , Modelos Moleculares , Ritonavir/farmacologia , Relação Estrutura-Atividade
16.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 3): 204-11, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21358051

RESUMO

Galectin-4, a member of the tandem-repeat subfamily of galectins, participates in cell-membrane interactions and plays an important role in cell adhesion and modulation of immunity and malignity. The oligosaccharide specificity of the mouse galectin-4 carbohydrate-recognition domains (CRDs) has been reported previously. In this work, the structure and binding properties of the N-terminal domain CRD1 were further investigated and the crystal structure of CRD1 in complex with lactose was determined at 2.1 Šresolution. The lactose-binding affinity was characterized by fluorescence measurements and two lactose-binding sites were identified: a high-affinity site with a K(d) value in the micromolar range (K(d1) = 600 ± 70 µM) and a low-affinity site with K(d2) = 28 ± 10 mM.


Assuntos
Galectina 4/química , Lactose/química , Domínios e Motivos de Interação entre Proteínas , Animais , Cristalografia por Raios X , Galectina 4/metabolismo , Lactose/metabolismo , Ligantes , Camundongos , Modelos Moleculares
17.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 4): 498-503, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21505251

RESUMO

Fungal ß-N-acetylhexosaminidases are enzymes that are used in the chemoenzymatic synthesis of biologically interesting oligosaccharides. The enzyme from Aspergillus oryzae was produced and purified from its natural source and crystallized using the hanging-drop vapour-diffusion method. Diffraction data from two crystal forms (primitive monoclinic and primitive tetragonal) were collected to resolutions of 3.2 and 2.4 Å, respectively. Electrophoretic and quantitative N-terminal protein-sequencing analyses confirmed that the crystals are formed by a complete biologically active enzyme consisting of a glycosylated catalytic unit and a noncovalently attached propeptide.


Assuntos
Aspergillus oryzae/enzimologia , beta-N-Acetil-Hexosaminidases/química , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Glicosilação , beta-N-Acetil-Hexosaminidases/metabolismo
18.
Eur J Oral Sci ; 119 Suppl 1: 261-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22243255

RESUMO

Ameloblastin (AMBN) is a protein expressed mainly during dental hard tissue development. Biochemically, it is classified as an intrinsically disordered protein (IDP). Its biological role remains largely unknown; however, the question of AMBN function will undoubtedly be connected to its structural properties and its potential for protein-protein and protein-cell interactions. A basic biophysical characterization of human recombinant ameloblastin (hrAMBN) and its N- and C-terminal domains by means of circular dichroism spectroscopy and dynamic light scattering showed that under physiological conditions ameloblastin is an IDP with a prevalent polyproline-II (PPII) conformation. Both the N- and C-terminal polypeptides, when expressed independently, showed different structural preferences upon heating as well as different behaviour in the presence of trifluoroethanol and CaCl(2) salt. The N-terminal peptide showed a more ordered structure with a strong tendency to adopt a helical conformation upon the addition of trifluorethanol, whereas the C-terminal domain seemed to be primarily responsible for the structural disorder of the entire AMBN molecule.


Assuntos
Proteínas do Esmalte Dentário/química , Fenômenos Biofísicos , Cloreto de Cálcio/farmacologia , Dicroísmo Circular , Reagentes de Ligações Cruzadas , Humanos , Concentração Osmolar , Conformação Proteica/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Espalhamento de Radiação , Análise de Sequência de Proteína , Cloreto de Sódio/farmacologia , Análise Espectral , Temperatura , Trifluoretanol/farmacologia
19.
Eur J Med Chem ; 225: 113798, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34482272

RESUMO

Some pathogens, including parasites of the genus Trypanosoma causing Human and Animal African Trypanosomiases, cannot synthesize purines de novo and they entirely rely on the purine salvage pathway (PSP) for their nucleotide generation. Thus, their PSP enzymes are considered as promising drug targets, sparsely explored so far. Recently, a significant role of acyclic nucleoside phosphonates (ANPs) as inhibitors of key enzymes of PSP, namely of 6-oxopurine phosphoribosyltransferases (PRTs), has been discovered. Herein, we designed and synthesized two series of new ANPs branched at the C1' position as mimics of adenosine monophosphate. The novel ANPs efficaciously inhibited Trypanosoma brucei adenine PRT (TbrAPRT1) activity in vitro and it was shown that the configuration on the C1' chiral centre strongly influenced their activity: the (R)-enantiomers proved to be more potent compared to the (S)-enantiomers. Two ANPs, with Ki values of 0.39 µM and 0.57 µM, represent the most potent TbrAPRT1 inhibitors reported to date and they are an important tool to further study purine metabolism in various parasites.


Assuntos
Adenina Fosforribosiltransferase/antagonistas & inibidores , Monofosfato de Adenosina/farmacologia , Antiprotozoários/farmacologia , Inibidores Enzimáticos/farmacologia , Nucleosídeos/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Adenina Fosforribosiltransferase/metabolismo , Monofosfato de Adenosina/síntese química , Monofosfato de Adenosina/química , Antiprotozoários/síntese química , Antiprotozoários/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Estrutura Molecular , Nucleosídeos/síntese química , Nucleosídeos/química , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Trypanosoma brucei brucei/enzimologia
20.
Eur J Med Chem ; 216: 113309, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33711765

RESUMO

Pharmacological inhibition of cyclin-dependent kinases has emerged as a possible treatment option for various cancer types. We recently identified substituted imidazo[1,2-c]pyrimidin-5(6H)-ones as inhibitors of cyclin-dependent kinase 2 (CDK2). Here, we report the synthesis of derivatives modified at positions 2, 3, 6 or 8 prepared using Suzuki-Miyaura cross-coupling, halogenation, Dimroth-type rearrangement and alkylation as the main synthetic methods. The compounds displayed micro- to submicromolar inhibition of CDK2/cyclin E activity. Binding of the most potent compound 3b to CDK2 was determined using isothermal titration calorimetry. The co-crystal structure of 3b in complex with fully active CDK2 was solved, revealing the binding mode of 3b in the ATP pocket and a hydrogen bonding interaction with hinge region residue Leu83. Evaluation against leukaemia cell lines revealed low cytotoxicity, which is in line with the high selectivity towards CDK2. This study demonstrates that substituted imidazo[1,2-c]pyrimidines can be exploited for future kinase inhibitor development.


Assuntos
Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Imidazóis/química , Inibidores de Proteínas Quinases/síntese química , Pirimidinas/química , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Quinase 2 Dependente de Ciclina/metabolismo , Humanos , Ligação de Hidrogênio , Imidazóis/metabolismo , Imidazóis/farmacologia , Simulação de Dinâmica Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA