Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bull Math Biol ; 79(4): 939-974, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28290010

RESUMO

In this work, we present a pedagogical tumour growth example, in which we apply calibration and validation techniques to an uncertain, Gompertzian model of tumour spheroid growth. The key contribution of this article is the discussion and application of these methods (that are not commonly employed in the field of cancer modelling) in the context of a simple model, whose deterministic analogue is widely known within the community. In the course of the example, we calibrate the model against experimental data that are subject to measurement errors, and then validate the resulting uncertain model predictions. We then analyse the sensitivity of the model predictions to the underlying measurement model. Finally, we propose an elementary learning approach for tuning a threshold parameter in the validation procedure in order to maximize predictive accuracy of our validated model.


Assuntos
Teorema de Bayes , Calibragem , Neoplasias , Humanos , Modelos Teóricos , Prognóstico , Incerteza
2.
Commun Biol ; 4(1): 6, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33398023

RESUMO

Intratumoural heterogeneity (ITH) contributes to local recurrence following radiotherapy in prostate cancer. Recent studies also show that ecological interactions between heterogeneous tumour cell populations can lead to resistance in chemotherapy. Here, we evaluated whether interactions between heterogenous populations could impact growth and response to radiotherapy in prostate cancer. Using mixed 3D cultures of parental and radioresistant populations from two prostate cancer cell lines and a predator-prey mathematical model to investigate various types of ecological interactions, we show that reciprocal interactions between heterogeneous populations enhance overall growth and reduce radiation sensitivity. The type of interaction influences the time of regrowth after radiation, and, at the population level, alters the survival and cell cycle of each population without eliminating either one. These interactions can arise from oxygen constraints and from cellular cross-talk that alter the tumour microenvironment. These findings suggest that ecological-type interactions are important in radiation response and could be targeted to reduce local recurrence.


Assuntos
Modelos Biológicos , Recidiva Local de Neoplasia/etiologia , Neoplasias da Próstata , Tolerância a Radiação , Linhagem Celular Tumoral , Humanos , Masculino , Esferoides Celulares
3.
PLoS One ; 14(10): e0216690, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31609977

RESUMO

INTRODUCTION: In oncological drug development, animal studies continue to play a central role in which the volume of subcutaneous tumours is monitored to assess the efficacy of new drugs. The tumour volume is estimated by taking the volume to be that of a regular spheroid with the same dimensions. However, this method is subjective, insufficiently traceable, and is subject to error in the accuracy of volume estimates as tumours are frequently irregular. METHODS & RESULTS: This paper reviews the standard technique for tumour volume assessment, calliper measurements, by conducting a statistical review of a large dataset consisting of 2,500 tumour volume measurements from 1,600 mice by multiple operators across 6 mouse strains and 20 tumour models. Additionally, we explore the impact of six different tumour morphologies on volume estimation and the detection of treatment effects using a computational tumour growth model. Finally, we propose an alternative method to callipers for estimating volume-BioVolumeTM, a 3D scanning technique. BioVolume simultaneously captures both stereo RGB (Red, Green and Blue) images from different light sources and infrared thermal images of the tumour in under a second. It then detects the tumour region automatically and estimates the tumour volume in under a minute. Furthermore, images can be processed in parallel within the cloud and so the time required to process multiple images is similar to that required for a single image. We present data of a pre-production unit test consisting of 297 scans from over 120 mice collected by four different operators. CONCLUSION: This work demonstrates that it is possible to record tumour measurements in a rapid minimally invasive, morphology-independent way, and with less human-bias compared to callipers, whilst also improving data traceability. Furthermore, the images collected by BioVolume may be useful, for example, as a source of biomarkers for animal welfare and secondary drug toxicity / efficacy.


Assuntos
Processamento de Imagem Assistida por Computador , Neoplasias Experimentais/patologia , Carga Tumoral , Animais , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA