Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891904

RESUMO

Tooth loss during the lifetime of an individual is common. A strategy to treat partial or complete edentulous patients is the placement of dental implants. However, dental implants are subject to bacterial colonization and biofilm formation, which cause an infection named peri-implantitis. The existing long-term treatments for peri-implantitis are generally inefficient. Thus, an electrical circuit was produced with zirconia (Zr) samples using a hot-pressing technique to impregnate silver (Ag) through channels and holes to create a path by LASER texturing. The obtained specimens were characterized according to vitro cytotoxicity, to ensure ZrAg non-toxicity. Furthermore, samples were inoculated with Staphylococcus aureus using 6.5 mA of alternating current (AC). The current was delivered using a potentiostat and the influence on the bacterial concentration was assessed. Using AC, the specimens displayed no bacterial adhesion (Log 7 reduction). The in vitro results presented in this study suggest that this kind of treatment can be an alternative and promising strategy to treat and overcome bacterial adhesion around dental implants that can evolve to biofilm.


Assuntos
Aderência Bacteriana , Biofilmes , Implantes Dentários , Staphylococcus aureus , Zircônio , Implantes Dentários/microbiologia , Zircônio/química , Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Humanos , Estimulação Elétrica/métodos , Propriedades de Superfície , Peri-Implantite/microbiologia , Peri-Implantite/terapia , Prata/química , Prata/farmacologia
2.
Biomacromolecules ; 16(4): 1341-51, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25748276

RESUMO

The feasibility of bacterial cellulose (BC) as a novel substrate for retinal pigment epithelium (RPE) culture was evaluated. Thin (41.6 ± 2.2 µm of average thickness) and heat-dried BC substrates were surface-modified via acetylation and polysaccharide adsorption, using chitosan and carboxymethyl cellulose. All substrates were characterized according to their surface chemistry, wettability, energy, topography, and also regarding their permeability, dimensional stability, mechanical properties, and endotoxin content. Then, their ability to promote RPE cell adhesion and proliferation in vitro was assessed. All surface-modified BC substrates presented similar permeation coefficients with solutes of up to 300 kDa. Acetylation of BC decreased it's swelling and the amount of endotoxins. Surface modification of BC greatly enhanced the adhesion and proliferation of RPE cells. All samples showed similar stress-strain behavior; BC and acetylated BC showed the highest elastic modulus, but the latter exhibited a slightly smaller tensile strength and elongation at break as compared to pristine BC. Although similar proliferation rates were observed among the modified substrates, the acetylated ones showed higher initial cell adhesion. This difference may be mainly due to the moderately hydrophilic surface obtained after acetylation.


Assuntos
Carboximetilcelulose Sódica/farmacologia , Proliferação de Células , Quitosana/farmacologia , Polissacarídeos Bacterianos/farmacologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Alicerces Teciduais/química , Carboximetilcelulose Sódica/química , Adesão Celular , Linhagem Celular , Quitosana/química , Módulo de Elasticidade , Gluconacetobacter xylinus/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Polissacarídeos Bacterianos/química , Epitélio Pigmentado da Retina/citologia , Resistência à Tração
3.
Biomacromolecules ; 15(7): 2701-8, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24884240

RESUMO

Silk-elastin-like proteins (SELPs) have enormous potential for use as customizable biomaterials in numerous biomedical and materials applications, yet success in harnessing this potential has been limited by the lack of a commercially viable industrially relevant production process. We have developed a scalable fed-batch production approach which enables a SELP volumetric productivity of 4.3 g L(-1) with E. coli BL21(DE3). This is the highest SELP productivity reported to date and is 50-fold higher than that reported by other groups. As compared to typical fed-batch processes, high preinduction growth rates and low inducer and oxygen concentrations are allowed whereas reduced postinduction feeding rates are preferred. Limiting factors were identified and productivity was found to be strongly influenced by a trade-off between the rate of production and plasmid stability. The process developed is robust, reproducible, and applicable to scale up to the industrial level and moves these biopolymers a step closer to the marketplace.


Assuntos
Elastina/biossíntese , Escherichia coli/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Seda/biossíntese , Técnicas de Cultura Celular por Lotes , Escherichia coli/crescimento & desenvolvimento
4.
Biomedicines ; 12(2)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38397963

RESUMO

Among the adjunctive procedures to accelerate orthodontic tooth movement (OTM), ultrasound (US) is a nonsurgical form of mechanical stimulus that has been explored as an alternative to the currently available treatments. This study aimed to clarify the role of US in OTM by exploring different stimulation parameters and their effects on the biological responses of cells involved in OTM. Human fetal osteoblasts and periodontal ligament fibroblasts cell lines were stimulated with US at 1.0 and 1.5 MHz central frequencies and power densities of 30 and 60 mW/cm2 in continuous mode for 5 and 10 min. Cellular proliferation, metabolic activity and protein expression were analyzed. The US parameters that significantly improved the metabolic activity were 1.0 MHz at 30 mW/cm2 for 5 min and 1.0 MHz at 60 mW/cm2 for 5 and 10 min for osteoblasts; and 1.0 MHz at 30 mW/cm2 for 5 min and 1.5 MHz at 60 mW/cm2 for 5 and 10 min for fibroblasts. By stimulating with these parameters, the expression of alkaline phosphatase was maintained, while osteoprotegerin synthesis was induced after three days of US stimulation. The US stimulation improved the biological activity of both osteoblasts and periodontal ligament fibroblasts, inducing their osteogenic differentiation.

5.
Biomedicines ; 12(1)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38255285

RESUMO

Numerous pieces of evidence have supported the therapeutic potential of photobiomodulation (PBM) to modulate bone remodeling on mechanically stimulated teeth, proving PBM's ability to be used as a coadjuvant treatment to accelerate orthodontic tooth movement (OTM). However, there are still uncertainty and discourse around the optimal PBM protocols, which hampers its optimal and consolidated clinical applicability. Given the differential expression and metabolic patterns exhibited in the tension and compression sides of orthodontically stressed teeth, it is plausible that different types of irradiation may be applied to each side of the teeth. In this sense, this study aimed to design and implement an optimization protocol to find the most appropriate PBM parameters to stimulate specific bone turnover processes. To this end, three levels of wavelength (655, 810 and 940 nm), two power densities (5 and 10 mW/cm2) and two regimens of single and multiple sessions within three consecutive days were tested. The biological response of osteoblasts and periodontal ligament (PDL) fibroblasts was addressed by monitoring the PBM's impact on the cellular metabolic activity, as well as on key bone remodeling mediators, including alkaline phosphatase (ALP), osteoprotegerin (OPG) and receptor activator of nuclear factor κ-B ligand (RANK-L), each day. The results suggest that daily irradiation of 655 nm delivered at 10 mW/cm2, as well as 810 and 940 nm light at 5 mW/cm2, lead to an increase in ALP and OPG, potentiating bone formation. In addition, irradiation of 810 nm at 5 mW/cm2 delivered for two consecutive days and suspended by the third day promotes a downregulation of OPG expression and a slight non-significant increase in RANK-L expression, being suitable to stimulate bone resorption. Future studies in animal models may clarify the impact of PBM on bone formation and resorption mediators for longer periods and address the possibility of testing different stimulation periodicities. The present in vitro study offers valuable insights into the effectiveness of specific PBM protocols to promote osteogenic and osteoclastogenesis responses and therefore its potential to stimulate bone formation on the tension side and bone resorption on the compression side of orthodontically stressed teeth.

7.
Nanomaterials (Basel) ; 13(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37299655

RESUMO

Hospitals and nursing home wards are areas prone to the propagation of infections and are of particular concern regarding the spreading of dangerous viruses and multidrug-resistant bacteria (MDRB). MDRB infections comprise approximately 20% of cases in hospitals and nursing homes. Healthcare textiles, such as blankets, are ubiquitous in hospitals and nursing home wards and may be easily shared between patients/users without an adequate pre-cleaning process. Therefore, functionalizing these textiles with antimicrobial properties may considerably reduce the microbial load and prevent the propagation of infections, including MDRB. Blankets are mainly comprised of knitted cotton (CO), polyester (PES), and cotton-polyester (CO-PES). These fabrics were functionalized with novel gold-hydroxyapatite nanoparticles (AuNPs-HAp) that possess antimicrobial properties, due to the presence of the AuNPs' amine and carboxyl groups, and low propensity to display toxicity. For optimal functionalization of the knitted fabrics, two pre-treatments, four different surfactants, and two incorporation processes were evaluated. Furthermore, exhaustion parameters (time and temperature) were subjected to a design of experiments (DoE) optimization. The concentration of AuNPs-HAp in the fabrics and their washing fastness were critical factors assessed through color difference (ΔE). The best performing knitted fabric was half bleached CO, functionalized using a surfactant combination of Imerol® Jet-B (surfactant A) and Luprintol® Emulsifier PE New (surfactant D) through exhaustion at 70 °C for 10 min. This knitted CO displayed antibacterial properties even after 20 washing cycles, showing its potential to be used in comfort textiles within healthcare environments.

8.
Pharmaceutics ; 15(3)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36986787

RESUMO

The combination of two or more agents capable of acting in synergy has been reported as a valuable tool to fight against pathogens. Silver nanoparticles (AgNPs) present a strong antimicrobial action, although their cytotoxicity for healthy cells at active concentrations is a major concern. Azoimidazole moieties exhibit interesting bioactivities, including antimicrobial activity. In this work, a class of recently described azoimidazoles with strong antifungal activity was conjugated with citrate or polyvinylpyrrolidone-stabilized AgNPs. Proton nuclear magnetic resonance was used to confirm the purity of the compounds before further tests and atomic absorption spectroscopy to verify the concentration of silver in the prepared dispersions. Other analytical techniques elucidate the morphology and stability of AgNPs and corresponding conjugates, namely ultraviolet-visible spectrophotometry, scanning transmission electron microscopy and dynamic light scattering analysis. The synergistic antimicrobial activity of the conjugates was assessed through a checkerboard assay against yeasts (Candida albicans and Candida krusei) and bacteria (Staphylococcus aureus and Escherichia coli). The conjugates showed improved antimicrobial activity against all microorganisms, in particular towards bacteria, with concentrations below their individual minimal inhibitory concentration (MIC). Furthermore, some combinations were found to be non-cytotoxic towards human HaCaT cells.

9.
Polymers (Basel) ; 15(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37050344

RESUMO

Textiles are important components for the development of lightweight and flexible displays useful in smart materials. In particular, halochromic textiles are fibrous materials with a color-changing ability triggered by pH variations mainly based on pH-sensitive dye molecules. Recently, a novel class of 2-aminoimidazole azo dyes was developed with distinct substituent patterns. In this work, silk fabric was functionalized through exhaustion for the first time with one of these dyes (AzoIz.Pip). The halochromic properties of the dye were assessed in an aqueous solution and after silk functionalization. The solutions and the fabrics were thoroughly analyzed by ultraviolet-visible (UV-vis) spectra, color strength (K/S), color difference (∆E), CIE L*a*b* coordinates, and the ultraviolet protection factor (UPF). The dyeing process was optimized, and the halochromic performance (and reversibility) was assessed in universal Britton-Robinson buffers (ranging from pH 3 to 12) and artificial body fluids (acid and alkaline perspiration, and wound exudate). AzoIz.Pip showed vibrant colors and attractive halochromic properties with a hypsochromic shift from blue (557 nm) to magenta (536 nm) in aqueous buffered solutions. Similarly, the functionalized silk showed a shift in wavelength of the maximum K/S value from 590 nm to 560 nm when pH increases. The silk fabric showed a high affinity to AzoIz.Pip, and promoted additional color stabilization of the dye, avoiding color loss as observed when the dye is in solution at alkaline pH after 24 h. The color reversibility was effective up to the fourth cycle and the fastness tests denoted suitable results, except washing fastness. The cytotoxicity of the silk fabric extracts was assessed, depicting reduced viability of HaCaT cells to <70% only when the dye concentration in the fabric is higher or equal to 64 µg·mL-1. Nevertheless, lower concentrations were also very effective for the halochromic performance in silk. These materials can thus be a helpful tool for developing sensors in several sectors such as biomedicine, packaging, filtration, agriculture, protective apparel, sports, camouflage, architecture, and design.

10.
Materials (Basel) ; 15(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35454546

RESUMO

The application of light-emitting diodes (LEDs) has been gaining popularity over the last decades. LEDs have advantages compared to traditional light sources in terms of lifecycle, robustness, compactness, flexibility, and the absence of non-hazardous material. Combining these advantages with the possibility of emitting Ultraviolet C (UVC) makes LEDs serious candidates for light sources in decontamination systems. Nevertheless, it is unclear if they present better decontamination effectiveness than traditional mercury vapor lamps. Hence, this research uses a systematic literature review (SLR) to enlighten three aspects: (1) UVC LEDs' application according to the field, (2) UVC LEDs' application in terms of different biological indicators, and (3) the decontamination effectiveness of UVC LEDs in comparison to conventional lamps. UVC LEDs have spread across multiple areas, ranging from health applications to wastewater or food decontamination. The UVC LEDs' decontamination effectiveness is as good as mercury vapor lamps. In some cases, LEDs even provide better results than conventional mercury vapor lamps. However, the increase in the targets' complexity (e.g., multilayers or thicker individual layers) may reduce the UVC decontamination efficacy. Therefore, UVC LEDs still require considerable optimization. These findings are stimulating for developing industrial or final users' applications.

11.
Polymers (Basel) ; 14(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35631945

RESUMO

The extraction and exploration of cellulose-based polymers is an exciting area of research [...].

12.
ACS Appl Polym Mater ; 4(5): 3908-3918, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-36568575

RESUMO

Polyester (PET) fabrics are widely applied in functional textiles due to their outstanding properties such as high strength, dimensional stability, high melting point, low cost, recyclability, and flexibility. Nevertheless, the lack of polar groups in the PET structure makes its coloration and functionalization difficult. The present work reports the one-step in situ synthesis of copper nanoparticles (CuNPs) onto the PET fabric employing sodium hypophosphate and ascorbic acid as reducing and stabilizing agents, at acidic (pH 2) and alkaline pH (pH 11). This synthesis (i) used safer reagents when compared with traditional chemicals for CuNP production, (ii) was performed at a moderate temperature (85 °C), and (iii) used no protective inert gas. The dielectric barrier discharge (DBD) plasma was used as an environmentally friendly method for the surface functionalization of PET to enhance the adhesion of CuNPs. The size of the CuNPs in an alkaline reaction (76-156 nm for not treated and 93.4-123 nm for DBD plasma-treated samples) was found to be smaller than their size in acidic media (118-310 nm for not treated and 249-500 nm for DBD plasma-treated samples), where the DBD plasma treatment promoted some agglomeration. In acidic medium, metallic copper was obtained, and a reddish color became noticeable in the textile. In alkaline medium, copper(I) oxide (Cu2O) was detected, and the PET samples exhibited a yellow color. The PET samples with CuNPs presented improved ultraviolet protection factor values. Finally, a minimal concentration of copper salt was studied to obtain the optimized antibacterial effect against Staphylococcus aureus and Escherichia coli. The functionalized samples showed strong antibacterial efficacy using low-concentration solutions in the in situ synthesis (2.0 mM of copper salt) and even after five washing cycles. The DBD plasma treatment improved the antibacterial action of the samples prepared in the alkaline medium.

13.
Sci Total Environ ; 838(Pt 1): 155957, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35580680

RESUMO

DEPTAL MCL® is a professional cleaning agent approved by the Portuguese Food Regulatory Authority and is used in agro-food industries, namely in fish canning industries in the north of Portugal. Its extensive use during cleaning procedures results in potential significant negative impacts on the performance of the downstream municipal wastewater treatment plant (WWTP). A lab-scale extended areation activated sludge wastewater treatment system, continuously fed by influent collected at a municipal WWTP, was used to assess the impact of a range of DEPTAL MCL® concentrations during 72 h. Despite distinct activated sludge community composition (due to its dynamic nature) and variations in real influent characteristics, a relevant impact was observed. DEPTAL MCL® effect was underscored through the use of a multivariate analysis using seventeen physicochemical operational factors and nineteen quantitative image analysis (QIA) parameters. DEPTAL MCL® exerted a severe negative impact on phosphorous (P-PO4) removal, total nitrogen (TN) removal and sludge volume index (SVI). With increasing DEPTAL MCL® concentrations, both P-PO4 and TN removal were affected and diminished proportionally. Moreover, several QIA parameters indicate defloculation when DEPTAL MCL® was present, in particular for intermediate size aggregates with significant impacts. Optical density of the effluent (Ode), displayed an increase of effluent turbidity. Percentage of area covered by small aggregates (%Areasml) was also significantly higher for the intermediate and higher DEPTAL MCL® concentrations tested. Principal component analysis exhibited 3 distinct ordenations: (i) control without addition of DEPTAL MCL®; (ii) addition of 0.03% and 0.06% and of (iii) 0.13 and 0.26% (v DEPTAL MCL®/v aeration tank). Canonical correspondence analysis (CCA) was used to correlate the physicochemical data, QIA and the filamentous bacteria species prevalence to DEPTAL MCL® concentration and incubation time. A time persistent DEPTAL MCL® effect was observed, underscoring the need of a pretreatment of wastewater containing this cleaning agent.


Assuntos
Esgotos , Purificação da Água , Animais , Bactérias , Reatores Biológicos , Nitrogênio , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia
14.
Polymers (Basel) ; 14(6)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35335469

RESUMO

Antimicrobial textiles are helpful tools to fight against multidrug-resistant pathogens and nosocomial infections. The deposition of silver nanoparticles (AgNPs) onto textiles has been studied to achieve antimicrobial properties. Yet, due to health and environmental safety concerns associated with such formulations, processing optimizations have been introduced: biocompatible materials, environmentally friendly agents, and delivery platforms that ensure a controlled release. In particular, the functionalization of polyester (PES) fabric with antimicrobial agents is a formulation in high demand in medical textiles. However, the lack of functional groups on PES fabric hinders the development of cost-effective, durable systems that allow a controlled release of antimicrobial agents. In this work, PES fabric was functionalized with AgNPs using one or two biocompatible layers of chitosan or hexamethyldisiloxane (HMDSO). The addition of organo-matrices stabilized the AgNPs onto the fabrics, protected AgNPs from further oxidation, and controlled their release. In addition, the layered samples were efficient against Staphylococcus aureus and Escherichia coli. The sample with two layers of chitosan showed the highest efficacy against S. aureus (log reduction of 2.15 ± 1.08 after 3 h of contact). Against E. coli, the sample with two layers of chitosan showed the best properties. Chitosan allowed to control the antimicrobial activity of AgNPs, avoid the complete loss of AgNPs after washings and act in synergy with AgNPs. After 3 h of incubation, this sample presented a log reduction of 4.81, and 7.27 of log reduction after 5 h of incubation. The antimicrobial results after washing showed a log reduction of 3.47 and 4.88 after 3 h and 5 h of contact, respectively. Furthermore, the sample with a final layer of HMDSO also presented a controlled antimicrobial effect. The antimicrobial effect was slower than the sample with just an initial layer of HMDSO, with a log reduction of 4.40 after 3 h of incubation (instead of 7.22) and 7.27 after 5 h. The biocompatibility of the composites was confirmed through the evaluation of their cytotoxicity towards HaCaT cells (cells viability > 96% in all samples). Therefore, the produced nanocomposites could have interesting applications in medical textiles once they present controlled antimicrobial properties, high biocompatibility and avoid the complete release of AgNPs to the environment.

15.
Nanomaterials (Basel) ; 12(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35335819

RESUMO

Nanotechnology is a powerful tool for engineering functional materials that has the potential to transform textiles into high-performance, value-added products. In recent years, there has been considerable interest in the development of functional textiles using metal nanoparticles (MNPs). The incorporation of MNPs in textiles allows for the obtention of multifunctional properties, such as ultraviolet (UV) protection, self-cleaning, and electrical conductivity, as well as antimicrobial, antistatic, antiwrinkle, and flame retardant properties, without compromising the inherent characteristics of the textile. Environmental sustainability is also one of the main motivations in development and innovation in the textile industry. Thus, the synthesis of MNPs using ecofriendly sources, such as polysaccharides, is of high importance. The main functions of polysaccharides in these processes are the reduction and stabilization of MNPs, as well as the adhesion of MNPs onto fabrics. This review covers the major research attempts to obtain textiles with different functional properties using polysaccharides and MNPs. The main polysaccharides reported include chitosan, alginate, starch, cyclodextrins, and cellulose, with silver, zinc, copper, and titanium being the most explored MNPs. The potential applications of these functionalized textiles are also reported, and they include healthcare (wound dressing, drug release), protection (antimicrobial activity, UV protection, flame retardant), and environmental remediation (catalysts).

16.
Artigo em Inglês | MEDLINE | ID: mdl-35457722

RESUMO

Almost two years have passed since COVID-19 was officially declared a pandemic by the World Health Organization. However, it still holds a tight grasp on the entire human population. Several variants of concern, one after another, have spread throughout the world. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) omicron variant may become the fastest spreading virus in history. Therefore, it is more than evident that the use of personal protective equipment (PPE) will continue to play a pivotal role during the current pandemic. This work depicts an integrative approach attesting to the effectiveness of ultra-violet-C (UV-C) energy density for the sterilization of personal protective equipment, in particular FFP2 respirators used by the health care staff in intensive care units. It is increasingly clear that this approach should not be limited to health care units. Due to the record-breaking spreading rates of SARS-CoV-2, it is apparent that the use of PPE, in particular masks and respirators, will remain a critical tool to mitigate future pandemics. Therefore, similar UV-C disinfecting rooms should be considered for use within institutions and companies and even incorporated within household devices to avoid PPE shortages and, most importantly, to reduce environmental burdens.


Assuntos
COVID-19 , Dispositivos de Proteção Respiratória , COVID-19/epidemiologia , COVID-19/prevenção & controle , Hospitais , Humanos , Equipamento de Proteção Individual , Portugal , SARS-CoV-2 , Ventiladores Mecânicos
17.
Pharmaceutics ; 14(2)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35214032

RESUMO

One of the most important measures implemented to reduce SARS-CoV-2 transmission has been the use of face masks. Yet, most mask options available in the market display a passive action against the virus, not actively compromising its viability. Here, we propose to overcome this limitation by incorporating antiviral essential oils (EOs) within polycaprolactone (PCL) electrospun fibrous mats to be used as intermediate layers in individual protection masks. Twenty EOs selected based on their antimicrobial nature were examined for the first time against the Escherichia coli MS2 virus (potential surrogate of SARS-CoV-2). The most effective were the lemongrass (LGO), Niaouli (NO) and eucalyptus (ELO) with a virucidal concentration (VC) of 356.0, 365.2 and 586.0 mg/mL, respectively. PCL was processed via electrospinning, generating uniform, beadless fibrous mats. EOs loading was accomplished via two ways: (1) physisorption on pre-existing mats (PCLaEOs), and (2) EOs blending with the polymer solution prior to fiber electrospinning (PCLbEOs). In both cases, 10% v/v VC was used as loading concentration, so the mats' stickiness and overwhelming smell could be prevented. The EOs presence and release from the mats were confirmed by UV-visible spectroscopy (≈5257-631 µg) and gas chromatography-mass spectrometry evaluations (average of ≈14.3% EOs release over 4 h), respectively. PCLbEOs mats were considered the more mechanically and thermally resilient, with LGO promoting the strongest bonds with PCL (PCLbLGO). On the other hand, PCLaNO and PCLaELO were deemed the least cohesive combinations. Mats modified with the EOs were all identified as superhydrophobic, capable of preventing droplet penetration. Air and water-vapor permeabilities were affected by the mats' porosity (PCL < PCLaEOs < PCLbEOs), exhibiting a similar tendency of increasing with the increase of porosity. Antimicrobial testing revealed the mats' ability to retain the virus (preventing infiltration) and to inhibit its action (log reduction averaging 1). The most effective combination against the MS2 viral particles was the PCLbLGO. These mats' scent was also regarded as the most pleasant during sensory evaluation. Overall, data demonstrated the potential of these EOs-loaded PCL fibrous mats to work as COVID-19 active barriers for individual protection masks.

18.
ACS Appl Bio Mater ; 5(11): 5181-5189, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36260814

RESUMO

The potential of ionic liquids (ILs) to be used as antimicrobial agents for biomedical applications has been hindered by the fact that most of them are cytotoxic toward mammalian cells. Understanding the mechanism of bacterial and mammalian cellular damage of ILs is key to their safety design. In this work, we evaluate the antimicrobial activity and mode of action of several ILs with varying anions and cations toward the clinically relevant Gram-negative Escherichia coli. Langmuir monolayer technique was used to evaluate if the IL's mode of action was related to the bacterial cell membrane interaction for an effective E. coli killing. 1-Decyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [DMIM][TFSI] and trihexyltetradecyl phosphonium bis(trifluoromethylsulfonyl) imide [P6,6,6,14][TFSI] were surface-active and induced bacterial cell lysis, through a membrane-disruption phenomenon on bacteria, in a mechanism that was clearly related to the long alkyl chains of the cation. 1-Ethyl-3-methylimidazolium hydrogen sulfate [EMIM][HSO4] was highly antimicrobial toward E. coli and found suitable for biological applications since it was harmless to mammalian cells at most of the tested concentrations. The results suggest that the imidazolium cation of the ILs is mostly responsible not only for their antimicrobial activity but also for their cytotoxicity, and the inclusion of different anions may tailor the ILs' biocompatibility without losing the capacity to kill bacteria, as is the case of [EMIM][HSO4]. Importantly, this IL was found to be highly antimicrobial even when incorporated in a polymeric matrix.


Assuntos
Líquidos Iônicos , Animais , Líquidos Iônicos/farmacologia , Escherichia coli , Antibacterianos/farmacologia , Ânions/farmacologia , Cátions/farmacologia , Imidas/farmacologia , Mamíferos
19.
Gels ; 8(8)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-36005090

RESUMO

Laboratories and industries that handle chemicals are ubiquitously prone to leakages. These may occur in storage rooms, cabinets or even in temporary locations, such as workbenches and shelves. A relevant number of these chemicals are corrosive, thus commercial products already exist to prevent material damage and injuries. One strategy consists of the use of absorbing mats, where few display neutralizing properties, and even less a controlled neutralization. Nevertheless, to the authors' knowledge, the commercially available neutralizing mats are solely dedicated to neutralizing acid or alkali solutions, never both. Therefore, this work describes the development and proof of a completely novel concept, where a dual component active mat (DCAM) is able to perform a controlled simultaneous neutralization of acid and alkali leakages by using microencapsulated active components. Moreover, its active components comprise food-grade ingredients, embedded in nonwoven polypropylene. The acid neutralizing mats contain sodium carbonate (Na2CO3) encapsulated in sodium alginate microcapsules (MC-ASC). Alkali neutralizing mats possess commercial encapsulated citric acid in hydrogenated palm oil (MIRCAP CT 85-H). A DCAM encompasses both MC-ASC and MIRCAP CT 85-H and was able to neutralize solutions up to 10% (v/v) of hydrochloric acid (HCl) and sodium hydroxide (NaOH). The efficacy of the neutralization was assessed by direct titration and using pH strip measurement tests to simulate the leakages. Due to the complexity of neutralization efficacy evaluation based solely on pH value, a thorough conductivity study was performed. DCAM reduced the conductivity of HCl and NaOH (1% and 2% (v/v)) in over 70%. The composites were characterized by scanning electron microscopy (SEM), differential calorimetry (DSC) and thermogravimetric analysis (TGA). The size of MC-ASC microcapsules ranged from 2 µm to 8 µm. Finally, all mat components displayed thermal stability above 150 °C.

20.
Brain Sci ; 11(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925627

RESUMO

The COVID-19 pandemic has had a negative impact on education. The restrictions imposed have undoubtedly led to impairment of the psychological well-being of both teachers and students, and of the way they experience interpersonal relationships. As reported previously in the literature, adverse effects such as loneliness, anxiety, and stress have resulted in a decrease in the cognitive performance of school and higher education students. Therefore, the objective of this work is to present a general overview of the reported adverse effects of the COVID-19 pandemic which may potentially influence the learning performance of students. Some neuroscientific findings related to memory and cognition, such as neuroplasticity and long-term potentiation, are also shown. We also discuss the positive effects of the practice of mindfulness, as well as other simple recommendations based on neuroscientific findings such as restful sleep, physical activity, and nutrition, which can act on memory and cognition. Finally, we propose some practical recommendations on how to achieve more effective student learning in the context of the pandemic. The aim of this review is to provide some assistance in this changing and uncertain situation in which we all find ourselves, and we hope that some of the information could serve as a starting point for hypotheses to be tested in educational research and their association with neuroscience.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA