Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 39(47): 16785-16796, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37970757

RESUMO

Room temperature ionic liquids (ILs) can create a strong accumulation of charges at solid interfaces by forming a very thin and dense electrical double layer (EDL). The structure of this EDL has important consequences in numerous applications involving ILs, for example, in supercapacitors, sensors, and lubricants, by impacting the interfacial capacitance, the charge carrier density of semiconductors, as well as the frictional properties of the interfaces. We have studied the interfacial structure of a long chain imidazolium-based IL (1-octyl-3-methylimidazolium dicyanamide) on several substrates: mica, silica, silicon, and molybdenum disulfide (MoS2), using atomic force microscopy (AFM) experiments and molecular dynamics (MD) simulations. We have observed 3 types of interfacial structures for the same IL, depending on the chemistry of the substrate and the water content, showing that the EDL structure is not an intrinsic property of the IL. We evidenced that at a low water content, neutral and apolar (thus hydrophobic) substrates promote a thin layer structure, where the ions are oriented parallel to the substrate and cations and anions are mixed in each layer. In contrast, a strongly charged (thus hydrophilic) substrate yields an extended structuration into several bilayers, while a heterogeneous layering with loose bilayer regions was observed on an intermediate polar and weakly charged substrate and on an apolar one at a high bulk water content. In the latter case, water contamination favors the formation of bilayer patches by promoting the segregation of the long chain IL into polar and apolar domains.

2.
Phys Chem Chem Phys ; 24(5): 3144-3162, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35040843

RESUMO

The practical use of ionic liquids (ILs) is benefiting from a growing understanding of the underpinning structural and dynamic properties, facilitated through classical molecular dynamics (MD) simulations. The predictive and explanatory power of a classical MD simulation is inextricably linked to the underlying force field. A key aspect of the forcefield for ILs is the ability to recover charge based interactions. Our focus in this paper is on the description and recovery of charge transfer and polarisability effects, demonstrated through MD simulations of the widely used 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C4C1im][NTf2] IL. We study the charge distributions generated by a range of ab initio methods, and present an interpolation method for determining atom-wise scaled partial charges. Two novel methods for determining the mean field (total) charge transfer from anion to cation are presented. The impact of using different charge models and different partial charge scaling (unscaled, uniformly scaled, atom-wise scaled) are compared to fully polarisable simulations. We study a range of Drude particle explicitly polarisable potentials and shed light on the performance of current approaches to counter known problems. It is demonstrated that small changes in the charge description and MD methodology can have a significant impact; biasing some properties, while leaving others unaffected within the structural and dynamic domains.

3.
J Chem Phys ; 154(8): 084504, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33639754

RESUMO

Knowledge of how the molecular structures of ionic liquids (ILs) affect their properties at electrified interfaces is key to the rational design of ILs for electric applications. Polarizable molecular dynamics simulations were performed to investigate the structural, electrical, and dynamic properties of electric double layers (EDLs) formed by imidazolium dicyanamide ([ImX1][DCA]) at the interface with the molybdenum disulfide electrode. The effect of side chain of imidazolium on the properties of EDLs was analyzed by using 1-ethyl-3-methylimidazolium ([Im21]), 1-octyl-3-methylimidazolium ([Im81]), 1-benzyl-3-methylimidazolium ([ImB1]), and 1-(2-hydroxyethyl)-3-methylimidazolium ([ImO1]) as cations. Using [Im21] as reference, we find that the introduction of octyl or benzyl groups significantly alters the interfacial structures near the cathode because of the reorientation of cations. For [Im81], the positive charge on the cathode induces pronounced polar and non-polar domain separation. In contrast, the hydroxyl group has a minor effect on the interfacial structures. [ImB1] is shown to deliver slightly larger capacitance than other ILs even though it has larger molecular volume than [Im21]. This is attributed to the limiting factor for capacitance being the strong association between counter-ions, instead of the free space available to ions at the interface. For [Im81], the charging mechanism is mainly the exchange between anions and octyl tails, while for the other ILs, the mechanism is mainly the exchange of counter-ions. Analysis on the charging process shows that the charging speed does not correlate strongly with macroscopic bulk dynamics like viscosity. Instead, it is dominated by local displacement and reorientation of ions.

4.
J Chem Phys ; 154(22): 224502, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34241234

RESUMO

The solubility of synthetic indigo dye was measured at room temperature in three deep eutectic solvents (DESs)-1:3 choline chloride:1,4-butanediol, 1:3 tetrabutylammonium bromide:1,4-butanediol, and 1:2 choline chloride:p-cresol-to test the hypothesis that the structure of DESs can be systematically altered, to induce specific DES-solute interactions, and, thus, tune solubility. DESs were designed starting from the well-known cholinium chloride salt mixed with the partially amphiphilic 1,4-butanediol hydrogen bond donor (HBD), and then, the effect of increasing salt hydrophobicity (tetrabutylammonium bromide) and HBD hydrophobicity (p-cresol) was explored. Measurements were made between 2.5 and 25 wt. % H2O, as a reasonable range representing atmospherically absorbed water, and molecular dynamics simulations were used for structural analysis. The choline chloride:1,4-butanediol DES had the lowest indigo solubility, with only the hydrophobic character of the alcohol alkyl spacers. Solubility was highest for indigo in the tetrabutylammonium bromide:1,4-butanediol DES with 2.5 wt. % H2O due to interactions of indigo with the hydrophobic cation, but further addition of water caused this to reduce in line with the added water mole fraction, as water solvated the cation and reduced the extent of the hydrophobic region. The ChCl:p-cresol DES did not have the highest solubility at 2.5 wt. % H2O, but did at 25 wt. % H2O. Radial distribution functions, coordination numbers, and spatial distribution functions demonstrate that this is due to strong indigo-HBD interactions, which allow this system to resist the higher mole fraction of water molecules and retain its solubility. The DES is, therefore, a host to local-composition effects in solvation, where its hydrophobic moieties concentrate around the hydrophobic solute, illustrating the versatility of DES as solvents.

5.
Angew Chem Int Ed Engl ; 60(23): 12876-12882, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33754419

RESUMO

Porous ionic liquids are non-volatile, versatile materials that associate porosity and fluidity. New porous ionic liquids, based on the ZIF-8 metal-organic framework and on phosphonium acetate or levulinate salts, were prepared and show an increased capacity to absorb carbon dioxide at low pressures. Porous suspensions based on phosphonium levulinate ionic liquid absorb reversibly 103 % more carbon dioxide per mass than pure ZIF-8 at 1 bar and 303 K. We show how the rational combination of MOFs with ionic liquids can greatly enhance low pressure CO2 absorption, paving the way towards a new generation of high-performance, readily available liquid materials for effective low pressure carbon capture.

6.
Nat Mater ; 18(12): 1350-1357, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406367

RESUMO

Driven by the potential applications of ionic liquids (ILs) in many emerging electrochemical technologies, recent research efforts have been directed at understanding the complex ion ordering in these systems, to uncover novel energy storage mechanisms at IL-electrode interfaces. Here, we discover that surface-active ILs (SAILs), which contain amphiphilic structures inducing self-assembly, exhibit enhanced charge storage performance at electrified surfaces. Unlike conventional non-amphiphilic ILs, for which ion distribution is dominated by Coulombic interactions, SAILs exhibit significant and competing van der Waals interactions owing to the non-polar surfactant tails, leading to unusual interfacial ion distributions. We reveal that, at an intermediate degree of electrode polarization, SAILs display optimum performance, because the low-charge-density alkyl tails are effectively excluded from the electrode surfaces, whereas the formation of non-polar domains along the surface suppresses undesired overscreening effects. This work represents a crucial step towards understanding the unique interfacial behaviour and electrochemical properties of amphiphilic liquid systems showing long-range ordering, and offers insights into the design principles for high-energy-density electrolytes based on spontaneous self-assembly behaviour.

7.
Phys Chem Chem Phys ; 22(3): 1003-1010, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31776539

RESUMO

Cellulose dissolution in mixtures of the ionic liquid 1-ethyl-3-methylimidazolium acetate with dimethylsulfoxide, [C2C1Im][OAc] + DMSO, have been kinetically compared using conventional heating and microwave heating in a single-mode cavity with a semiconductor generator. Microwaves led to enhancements in the dissolution rate between 21 and 57% under different conditions of temperature and concentration of ionic liquid. Rate enhancement by microwaves prominently occurred at temperatures above 60 °C. Based on an Arrhenius plot and wide-band dielectric measurements we advance the hypothesis that the faster dissolution is caused by ionic motion induced by microwaves in the timescale of formation and breaking of hydrogen bonds between cellulose chains and acetate anions.

8.
Phys Chem Chem Phys ; 22(35): 20114-20122, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32936137

RESUMO

Understanding the transport of sodium ions in ionic liquids is key to designing novel electrolyte materials for sodium-ion batteries. In this work, we combine molecular dynamics simulation and experiments to study how molecular interactions and local ordering affect relevant physico-chemical properties. Ionic transport and local solvation environments are investigated in electrolytes composed of sodium bis(fluorosulfonyl)imide, (Na[FSI]), in N,N-methylpropylpyrrolidinium bis(fluorosulfonyl)imide, [C3C1pyr][FSI], at different salt concentrations. The electrolyte systems are modelled by means of molecular dynamic simulations using a polarizable force field. We show that including polarization effects explicitly in the molecular simulations is required in order to attain a reliable description of the transport properties of sodium in the [C3C1pyr][FSI] electrolyte. The validation of the computational results upon comparison with experimental data allows us to assess the suitability of polarizable force fields in describing and interpreting the structure and dynamics of the sodium salt-ionic liquid system, which is essential to enable the application of IL-based electrolytes in novel energy-storage technologies.

9.
J Chem Phys ; 152(1): 014103, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31914749

RESUMO

Numerous combinations of cations and anions are possible for the production of ionic liquids with fine-tuned properties once the correlation with the molecular structure is known. In this sense, computer simulations are useful tools to explain and even predict the properties of ionic liquids. However, quantum mechanical methods are usually restricted to either small clusters or short time scales so that parameterized force fields are required to study the bulk liquids. In this work, a method is proposed to enable a comparison between the quantum mechanical system and both polarizable and nonpolarizable force fields by means of the calculation of free energy surfaces for the translational motion of the anion around the cation in gas phase. This method was tested for imidazolium-based cations with 3 different anions, [BF4]-, [N(CN)2]-, and [NTf2]-. Better agreement was found with the density functional theory calculations when polarizability is introduced in the force field. In addition, the ion pair free energy surfaces reproduced the main structural patterns observed in the first coordination shell in molecular dynamics simulations of the bulk liquid, proving to be useful probes for the liquid phase structure that can be computed with higher level methods and the comparison with forcefields can indicate further improvements in their parameterization.

10.
Phys Chem Chem Phys ; 21(17): 8865-8873, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30977753

RESUMO

After studying the properties of a mixture of hydrogenated and fluorinated ionic liquids we have measured the solubility of perfluoromethane, perfluoroethane and perfluoropropane in 1-alkyl-3-methylimidazolium based ionic liquids with hydrogenated or fluorinated alkyl side-chains: 1-octyl-3-methylimidazolium bis[trifluoromethylsulfonyl]amide ([C8C1Im][NTf2]), 1-octyl-3-methylimidazolium bis[pentafluoroethylsulfonyl]amide ([C8C1Im][BETI]), 1-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)-3-methylimidazolium bis[trifluoromethylsulfonyl]amide ([C8H4F13C1Im][NTf2]), and 1-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)-3-methylimidazolium bis[pentafluoroethylsulfonyl]amide ([C8H4F13C1Im][BETI]). The ionic liquids expand on mixing and mix endothermally with a relatively high enthalpy of mixing (ΔmixH for [C8C1Im]x[C8H4F13C1Im](1-x)[NTf2] of ca. 0.85 kJ mol-1 for x = 0.5) when compared with other ionic mixtures. The solubility of the perfluorinated gases is larger in the fluorinated ionic liquids when compared with that of their hydrogenated counterparts and follows the order [C8H4F13C1Im][BETI] > [C8H4F13C1Im][NTf2] > [C8C1Im][BETI] > [C8C1Im][NTf2], a behaviour explained by a slightly more favourable enthalpy of solvation. The fluorinated ionic liquids nevertheless do not dissolve larger quantities of perfluorinated gases than their hydrogenated equivalents, as observed by comparing the results herein for perfluoroethane to those measured previously for ethane in the same ionic liquids. By using molecular simulations to study the microscopic structure of the solutions, we could show that the gases, hydrogenated and fluorinated, are always preferentially solvated in the apolar domains of the ionic liquids, and the hydrogenated hydrocarbon gases are always more soluble, independent of the fluorination of the ionic liquid.

11.
J Chem Phys ; 148(19): 193840, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-30307214

RESUMO

The aim of this work is to provide a better understanding of the interface between graphite and different molecular and ionic liquids. Experimental measurements of the liquid surface tension and of the graphite-liquid contact angle for sixteen ionic liquids and three molecular liquids are reported. These experimental values allowed the calculation of the solid/liquid interfacial energy that varies, for the ionic liquids studied, between 14.5 mN m-1 for 1-ethyl-3-methylimidazolium dicyanamide and 37.8 mN m-1 for 3-dodecyl-1-(naphthalen-1-yl)-1H-imidazol-3-ium tetrafluoroborate. Imidazolium-based ionic liquids with large alkyl side-chains or functionalized with benzyl groups seem to interact more favourably with freshly peeled graphite surfaces. Even if the interfacial energy seems a good descriptor to assess the affinity of a liquid for a carbon-based solid material, we conclude that both the surface tension of the liquid and the contact angle between the liquid and the solid can be significant. Molecular dynamics simulations were used to investigate the ordering of the ions near the graphite surface. We conclude that the presence of large alkyl side-chains in the cations increases the ordering of ions at the graphite surface. Benzyl functional groups in the cations lead to a large affinity towards the graphite surface.

12.
Faraday Discuss ; 206: 61-75, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-28933474

RESUMO

We use molecular dynamics simulations to study the exfoliation of graphene and fluorographene in molecular and ionic liquids, by performing computer experiments in which one layer of the 2D nanomaterial is peeled from a stack, in vacuum and in the presence of solvent. The liquid media and the nanomaterials are represented by fully flexible, atomistic force fields. From these simulations we calculate the potential of mean force, or reversible work, required to exfoliate the materials. Calculations in water and organic liquids showed that small amides (NMP, DMF) are among the best solvents for exfoliation, in agreement with the experiment. We tested ionic liquids with different cation and anion structures, allowing us to learn about their solvent qualities for the exfoliation of the nanomaterials. First, a long alkyl side chain on the cation is favourable for exfoliation of both graphene and fluorographene. The presence of aromatic groups on the cation is also favourable for graphene. No beneficial effect was found between fluorine-containing anions and fluorographene. We also analysed the ordering of ions in the interfacial layers with the materials. Near graphene, nonpolar groups are found along with charged groups, whereas near fluorographene almost exclusively non-charged groups are found, with ionic moieties segregated to the second layer. Therefore, fluorographene appears to be the more hydrophobic surface, as expected.

13.
Phys Chem Chem Phys ; 19(26): 17075-17087, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28621790

RESUMO

We used molecular dynamics simulation to study the effect of suspended carbon nanomaterials, nanotubes and graphene sheets, on the thermal conductivity of ionic liquids, an issue related to understanding the properties of nanofluids. One important aspect that we developed is an atomistic model of the interactions between the organic ions and carbon nanomaterials, so we did not rely on existing force fields for small organic molecules or assume simple combining rules to describe the interactions at the liquid/material interface. Instead, we used quantum calculations with a density functional suitable for non-covalent interactions to parameterize an interaction model, including van der Waals terms and also atomic partial charges on the materials. We fitted a n-m interaction potential function with n values of 9 or 10 and m values between 5 and 8, so a 12-6 Lennard-Jones function would not fit the quantum calculations. For the atoms of ionic liquids and carbon nanomaterials interacting among themselves, we adopted existing models from the literature. We studied the imidazolium ionic liquids [C4C1im][SCN], [C4C1im][N(CN)2], [C4C1im][C(CN)3] and [C4C1im][(CF3SO2)2N]. Attraction is stronger for cations (than for anions) above and below the π-system of the nanomaterials, whereas anions show stronger attraction for the hydrogenated edges. The ordering of ions around and inside (7,7) and (10,10) single-walled nanotubes, and near a stack of graphene sheets, was analysed in terms of density distribution functions. We verified that anions are found, as well as cations, in the first interfacial layer interacting with the materials, which is surprising given the interaction potential surfaces. The thermal conductivity of the ionic liquids and of composite systems containing one nanotube or one graphene stack in suspension was calculated using non-equilibrium molecular dynamics. Thermal conductivity was calculated along the axis of the nanotube and across the planes of graphene, in order to see the anisotropy. In the composite systems containing the nanotube, there is an enhancement of the overall thermal conductivity, with calculated values comparing well with experiments on nanotube suspensions, namely in terms of the order of the different ionic liquids. In the systems containing the graphene stack, the interfacial region of the ionic liquid near the surface of the material has an enhanced thermal conductivity with respect to the bulk liquid, but no significant discontinuity in the temperature profiles were observed. This is important information for models of thermal conduction in nanofluids.

14.
Phys Chem Chem Phys ; 19(40): 27694-27703, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28983549

RESUMO

The aim of this work is to understand the details of the interactions of ionic liquids with carbon nanomaterials (graphene and nanotubes) using polyaromatic compounds as model solutes. We have combined the measurements of thermodynamic quantities of solvation with molecular dynamics simulations to provide a microscopic view. The solubility of five polycyclic aromatic hydrocarbons (naphthalene, anthracene, phenanthrene, pyrene and coronene) was determined in seven ionic liquids ([C4C1im][C(CN)3], [C4C1pyrr][Ntf2], [C10C1im][Ntf2], [C2C1im][C(CN)3], [C2C1im][Ntf2], [C3C1pyrr][N(CN)2] and [C4C1im][N(CN)2]) at 298 K. The enthalpies of the dissolution of naphthalene, anthracene and pyrene were measured in four of the ionic liquids. Free energies were estimated from those measurements in order to analyse the entropic or enthalpic contributions to the dissolution process. Molecular dynamics simulations provided solvation free energies that were compared to experimental and structural information. Spatial distributions of solvent ions around the solutes when combined with IR measurements elucidate the structure of solvation environments. Interactions between the imidazolium rings of cations and the π system of the solutes have been identified. However, ionic liquids with pyrrolidinium cations appeared as better solvents due to favourable enthalpic contributions compared to imidazolium cations. Long alkyl side chains on cations lead to higher solubility and lower enthalpy of dissolution by creating a "softer" solvation environment. Considering the effect of anions, small and planar anions lead to higher solubilities and lower enthalpies of dissolution of polyaromatic hydrocarbons. These findings provide the design principles based on molecular interactions and the structure of solvation environments to choose or formulate ionic liquids in view of their affinity for carbon nanomaterials.

15.
J Chem Phys ; 146(20): 204501, 2017 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-28571336

RESUMO

One important development in interaction potential models, or atomistic force fields, for molecular simulation is the inclusion of explicit polarisation, which represents the induction effects of charged or polar molecules on polarisable electron clouds. Polarisation can be included through fluctuating charges, induced multipoles, or Drude dipoles. This work uses Drude dipoles and is focused on room-temperature ionic liquids, for which fixed-charge models predict too slow dynamics. The aim of this study is to devise a strategy to adapt existing non-polarisable force fields upon addition of polarisation, because induction was already contained to an extent, implicitly, due to parametrisation against empirical data. Therefore, a fraction of the van der Waals interaction energy should be subtracted so that the Lennard-Jones terms only account for dispersion and the Drude dipoles for induction. Symmetry-adapted perturbation theory is used to resolve the dispersion and induction terms in dimers and to calculate scaling factors to reduce the Lennard-Jones terms from the non-polarisable model. Simply adding Drude dipoles to an existing fixed-charge model already improves the prediction of transport properties, increasing diffusion coefficients, and lowering the viscosity. Scaling down the Lennard-Jones terms leads to still faster dynamics and densities that match experiment extremely well. The concept developed here improves the overall prediction of density and transport properties and can be adapted to other models and systems. In terms of microscopic structure of the ionic liquids, the inclusion of polarisation and the down-scaling of Lennard-Jones terms affect only slightly the ordering of the first shell of counterions, leading to small decreases in coordination numbers. Remarkably, the effect of polarisation is major beyond first neighbours, significantly weakening spatial correlations, a structural effect that is certainly related to the faster dynamics of polarisable models.

16.
J Chem Inf Model ; 56(1): 260-8, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26646769

RESUMO

LAMMPS is a very customizable molecular dynamics simulation software, which can be used to simulate a large diversity of systems. We introduce a new package for simulation of polarizable systems with LAMMPS using thermalized Drude oscillators. The implemented functionalities are described and are illustrated by examples. The implementation was validated by comparing simulation results with published data and using a reference software. Computational performance is also analyzed.


Assuntos
Simulação de Dinâmica Molecular , Temperatura , Armazenamento e Recuperação da Informação , Conformação Molecular , Pressão
17.
J Chem Phys ; 140(24): 244514, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24985661

RESUMO

The glass transition pressure at room temperature, pg, of six ionic liquids based on 1-alkyl-3-methylimidazolium cations and the anions [BF4](-), [PF6](-), and bis(trifluromethanesulfonyl)imide, [NTf2](-), has been obtained from the pressure dependence of the bandwidth of the ruby fluorescence line in diamond anvil cells. Molar volume, Vm(pg), has been estimated by a group contribution model (GCM) developed for the ionic liquids. A density scaling relation, TV(γ), has been considered for the states Vm(pg, 295 K) and Vm(Tg, 0.1 MPa) using the simplifying condition that the viscosity at the glass transition is the same at pg at room temperature and at atmospheric pressure at Tg. Assuming a constant γ over this range of density, a reasonable agreement has been found for the γ determined herein and that of a previous density scaling analysis of ionic liquids viscosities under moderate conditions. Further support for the appropriateness of extrapolating the GCM equation of state to the GPa pressure range is provided by comparing the GCM and an equation of state previously derived in the power law density-scaling regime.

18.
J Phys Chem B ; 127(14): 3266-3277, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37011369

RESUMO

Porous ionic liquids, which are suspensions of nanoporous particles in ionic liquids that maintain permanent porosity, are effective and selective media for the conversion of styrene oxide into styrene carbonate, absorbing CO2 [Zhou et al. Chem. Commun. 2021, 57, 7922-7925]. Here we elucidate the mechanism of selectivity using polarizable molecular dynamics simulations, which provide a detailed view on the structure of the porous ionic liquid and on the local solvation environments of the reacting species. The porous ionic liquids studied are composed of tetradecyltrihexylphosphonium chloride, or [P66614]Cl, and the ZIF-8 zinc-methylimidazolate metal-organic framework (MOF). The CL&Pol polarizable force field was extended to represent epoxide and cyclic carbonate functional groups, allowing the ionic liquid, the reactants, and the MOF to be all represented by fully flexible, polarizable force fields, providing a detailed description of interactions. The presence of reactant and product molecules leads to changes in the structure of the ionic liquid, revealed by domain analysis. The structure of local solvation environments, namely, the arrangement of charged moieties and CO2 around the epoxide ring of the reactant molecules, clearly indicate ring-opening the reaction mechanism. The MOF acts as a reservoir of CO2 through its free volume. The solute molecules are found in the accessible outer cavities of the MOF, which promotes reaction of the epoxide with CO2 excluding other epoxide molecules, thereby preventing the formation of oligomers, which explains the selectivity toward conversion to cyclic carbonates.

19.
Chemphyschem ; 13(7): 1753-63, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22434786

RESUMO

The solvation of glycine in two ionic liquids (ILs), namely, 1-butyl-3-methylimidazolium acetate, [C(1)C(4)Im][OAc], and 1-butyl-3-methylimidazolium trifluoroacetate, [C(1)C(4)Im][TFA], was studied by a combination of experimental and theoretical methods. The solubility of glycine in both ILs was determined at 333.15 K to be (8.1±0.5) and (1.0±0.5) wt % in [C(1)C(4)Im][OAc] and [C(1)C(4)Im][TFA], respectively. By IR spectroscopy it was found that, when dissolved in the ILs, glycine was mainly present in its zwitterionic form. Structural and energetic aspects of the solvation of glycine in the ILs and in mixtures of ILs and water were investigated by ab initio calculations and molecular dynamic simulations. It was observed that the firstly solvation shell around glycine consisted predominantly of acetate or trifluoroacetate anions, which formed hydrogen bonds either with the carboxylic group of neutral glycine or with the protonated ammonium group of the zwitterionic form. When water is present in the solutions, hydrogen bonds between water and the anion prevail. The overall energy of the system was decomposed into its components between pairs of species. It was established that the dominant contribution to the interaction energy between glycine and the IL was due to hydrogen bonds with the anions and the statistics of hydrogen bonds were analysed.


Assuntos
Glicina/química , Imidazóis/química , Líquidos Iônicos/química , Água/química , Halogenação , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Solubilidade , Espectrofotometria Infravermelho , Temperatura , Termodinâmica
20.
Chemphyschem ; 13(17): 3866-74, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23047473

RESUMO

A classical force field is proposed for the molecular simulation of primary alkanolamines containing a NH(2)-C-C-OH backbone. A method is devised to take into account the polar (H-bonding) environment of the alkanolamines by calculating electrostatic charges in the presence of explicit solvent molecules. The force field does not use a universal set of charges, but is rather constructed by following a general method for obtaining specific charges for the different alkanolamines. The model is parameterized on the two simplest primary alkanolamines and then validated by calculating thermodynamic properties of five other molecules. Experimental liquid densities and enthalpies of vaporization are also reported in order to complete existing literature data. The predicted ability of the force field is evaluated by comparing the simulation results with experimental densities and enthalpies of vaporization. Densities are predicted with an uncertainty of 1.5 % and enthalpies of vaporization with an uncertainty of 1 kJ mol(-1). A decomposition of the interaction energy into electrostatic and repulsive-dispersive interactions and an analysis of hydrogen-bond statistics lead to a complex picture. Some terms of these interactions are related to the molecular structure in a clear way, others are not. The results provide insights into the structure-property relations that contribute to a better description of the thermodynamic properties of alkanolamines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA