RESUMO
Mammalian membrane proteins perform essential physiologic functions that rely on their accurate insertion and folding at the endoplasmic reticulum (ER). Using forward and arrayed genetic screens, we systematically studied the biogenesis of a panel of membrane proteins, including several G-protein-coupled receptors (GPCRs). We observed a central role for the insertase, the ER membrane protein complex (EMC), and developed a dual-guide approach to identify genetic modifiers of the EMC. We found that the back of Sec61 (BOS) complex, a component of the multipass translocon, was a physical and genetic interactor of the EMC. Functional and structural analysis of the EMCâ BOS holocomplex showed that characteristics of a GPCR's soluble domain determine its biogenesis pathway. In contrast to prevailing models, no single insertase handles all substrates. We instead propose a unifying model for coordination between the EMC, the multipass translocon, and Sec61 for the biogenesis of diverse membrane proteins in human cells.
Assuntos
Retículo Endoplasmático , Proteínas de Membrana , Canais de Translocação SEC , Retículo Endoplasmático/metabolismo , Humanos , Canais de Translocação SEC/metabolismo , Canais de Translocação SEC/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Células HEK293 , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genéticaRESUMO
Designing highly active and robust catalysts for the oxygen evolution reaction is key to improving the overall efficiency of the water splitting reaction. It has been previously demonstrated that evaporation induced self-assembly (EISA) can be used to synthesize highly porous and high surface area cerate-based fluorite nanocatalysts, and that substitution of Ce with 50% rare earth (RE) cations significantly improves electrocatalyst activity. Herein, the defect structure of the best performing nanocatalyst in the series are further explored, Nd2Ce2O7, with a combination of neutron diffraction and neutron pair distribution function analysis. It is found that Nd3 + cation substitution for Ce in the CeO2 fluorite lattice introduces higher levels of oxygen Frenkel defects and induces a partially reduced RE1.5Ce1.5O5 + x phase with oxygen vacancy ordering. Significantly, it is demonstrated that the concentration of oxygen Frenkel defects and improved electrocatalytic activity can be further enhanced by increasing the compositional complexity (number of RE cations involved) in the substitution. The resulting novel compositionally-complex fluorite- (La0.2Pr0.2Nd0.2Tb0.2Dy0.2)2Ce2O7 is shown to display a low OER overpotential of 210 mV at a current density of 10 mAcm-2 in 1M KOH, and excellent cycling stability. It is suggested that increasing the compositional complexity of fluorite nanocatalysts expands the ability to tailor catalyst design.
RESUMO
Mapping genetic interactions is essential for determining gene function and defining novel biological pathways. We report a simple to use CRISPR interference (CRISPRi) based platform, compatible with Fluorescence Activated Cell Sorting (FACS)-based reporter screens, to query epistatic relationships at scale. This is enabled by a flexible dual-sgRNA library design that allows for the simultaneous delivery and selection of a fixed sgRNA and a second randomized guide, comprised of a genome-wide library, with a single transduction. We use this approach to identify epistatic relationships for a defined biological pathway, showing both increased sensitivity and specificity than traditional growth screening approaches.
Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , RNA Guia de Sistemas CRISPR-Cas , Biblioteca Gênica , Genoma , Sistemas CRISPR-CasRESUMO
The configurational complexity and distinct local atomic environments of high entropy oxides remain largely unexplored, leaving structure-property relationships and the hypothesis that the family offers rich tunability for applications ambiguous. This work investigates the influence of cation size and materials synthesis in determining the resulting structure and magnetic properties of a family of high entropy rare-earth zirconates (HEREZs, nominal composition RE2 Zr2 O7 with RE = rare-earth element combinations including Eu, Gd, Tb, Dy, Ho, La, or Sc). The structural characterization of the series is examined through synchrotron X-ray diffraction and pair distribution function analysis, and electron microscopy, demonstrating average defect-fluorite structures with considerable local disorder, in all samples. The surface morphology and particle sizes are found to vary significantly with preparation method, with irregular micron-sized particles formed by high temperature sintering routes, spherical nanoparticles resulting from chemical co-precipitation methods, and porous nanoparticle agglomerates resulting from polymer steric entrapment synthesis. In agreement with the disordered cation distribution found across all samples, magnetic measurements indicate that all synthesized HEREZs show frustrated magnetic behavior, as seen in a number of single-component RE2 Zr2 O7 pyrochlore oxides. These findings advance the understanding of the local structure of high entropy oxides and demonstrate strategies for designing nanostructured morphologies in the class.
RESUMO
Predicting the precipitation of solids is important in both natural systems and subsurface energy applications. The factors controlling reaction mechanisms, phase selection and conversion between phases are particularly important. In this contribution the precipitation and growth of an amorphous calcium carbonate species from flowing aqueous solution in a nanoporous controlled pore glass is followed in situ with differential X-ray pair distribution function analysis. It is discovered that the local atomic structure of this phase indicates monohydrocalcite-like pair-pair correlations, yet is functionally amorphous because it lacks long-range structure. The unexpected occurrence of synthetic proto-monohydrocalcite amorphous calcium carbonate, precipitated from a solution undersaturated with respect to published solubilities, suggests that nanopore confinement facilitates formation of an amorphous phase at the expense of more favorable crystalline ones. This result illustrates that confinement and interface effects are physical factors exerting control on mineral nucleation behavior in natural and geological systems.
Assuntos
Carbonato de Cálcio , Nanoporos , Carbonato de Cálcio/química , Minerais/químicaRESUMO
High-entropy oxides (HEOs) have attracted great interest in diverse fields because of their inherent opportunities to tailor and combine materials functionalities. The control of local order/disorder in the class is by extension a grand challenge toward realizing their vast potential. Here we report the first examples of pyrochlore HEOs with five M-site cations, for Nd2M2O7, in which the local structure has been investigated by neutron diffraction and pair distribution function (PDF) analysis. The average structure of the pyrochlores is found to be orthorhombic Imma, in agreement with radius-ratio rules governing the structural archetype. The computed PDFs from density functional theory relaxed special quasirandom structure models are compared with real space PDFs in this work to evaluate M-site order/disorder. Reverse Monte Carlo combined with ab initio molecular dynamics and Metropolis Monte Carlo simulations demonstrates that Nd2(Ta0.2Sc0.2Sn0.2Hf0.2Zr0.2)2O7 is synthesized with its M-site local to nanoscale order highly randomized/disordered, while Nd2(Ti0.2Nb0.2Sn0.2Hf0.2Zr0.2)2O7+x exhibits a strong distortion of the TiO6 octahedron and small degree of Ti chemical short-range order (SRO) on the subnanometer scale. Calculations suggest that this may be intrinsic, energetically favored SRO rather than due to sample processing. These results offer an important demonstration that the engineered variation of participating ions in HEOs, even among those with very similar radii, provides richly diverse opportunities to control local order/disorder motifs-and therefore materials properties for future designs. This work also hints at the exquisite level of detail that may be needed in computational and experimental data analysis to guide structure-property tuning in the emerging HEO materials class.
RESUMO
Surface adsorbates and surrounding matrix species have been demonstrated to affect the properties of nanoscale ferroelectrics and nanoscale ferroelectric composites; potentially counteracting performance losses that can occur in small particle sizes. In this work, the effects of nonpolar oleic acid (OA) and polar tetrafluoroborate (BF4 - ) ligand capping on the surface of various sizes of BaTiO3 nanocubes have been investigated with combined neutron diffraction and neutron pair distribution function (PDF), density functional theory (DFT), and ab initio molecular dynamics (AIMD) methods. The low real space PDF region provides an unobstructed view of rhombohedral (split short and long) Ti-O distances in BaTiO3 nanocubes, mimicking the well-established order-disorder local structure found in bulk BaTiO3 . Interestingly, the intermediate-range order in nanocubes is found to be orthorhombic, rather than tetragonal. It is concluded that polar ligands adsorbed at BaTiO3 surfaces stabilize the correlation length scale of local rhombohedral distortions in ferroelectric nanoparticles relative to nonpolar ligands.
RESUMO
Partial anion substitution in transition metal oxides provides rich opportunities to control and tune physical and chemical properties, for example, combining the merits of oxides and nitrides. In addition, the possibility of resulting anion sublattice order provides a means to target polar and chiral structures based on a wide array of accessible structural archetypes by design. Here, we investigate the local structures of a family of perovskite tantalum oxynitrides-ATaO2N (A = Ba, Sr, and Ca)-using a combination of experimental and theoretical approaches including neutron total scattering, density functional theory (DFT), and ab initio molecular dynamics (AIMD) simulations. We present the first experimental study of chemical short-range order (CSRO) in CaTaO2N, confirming local cis N ordering of the anion sub-lattice. Our systematic exploration of a local structure across the A cation size series (from the larger Ba to the smaller Ca) reveals a perovskite motif increasingly distorted with respect to long-range average structures. DFT and AIMD simulations support the observed trends. Overall, structures with cis ordering of the nitrogen anions in each TaO4N2 octahedron are favored over those with trans ordering. With diminishing A cation size, local cis ordering and Ta off-centering play decreasing roles in overall lattice stability, overshadowed by the stabilizing effects of octahedral tilting. The influence of these factors on local dipole formation and frustrated dipole ordering are discussed.
RESUMO
Recently, there have been renewed interests in exploring new catalysts for ammonia synthesis under mild conditions. Electride-based catalysts are among the emerging ones. Ruthenium particles supported on an electride composed of a mixture of calcium and aluminum oxides (C12A7) have attracted great attention for ammonia synthesis due to their facile ability in activating N2 under ambient pressure. However, the exact nature of the reactive hydrogen species and the role of electride support still remain elusive for this catalytic system. In this work, we report for the first time that the surface-adsorbed hydrogen, rather than the hydride encaged in the C12A7 electride, plays a major role in ammonia synthesis over the Ru/C12A7 electride catalyst with the aid of in situ neutron scattering techniques. Combining in situ neutron diffraction, inelastic neutron spectroscopy, density functional theory (DFT) calculation, and temperature-programmed reactions, the results provide direct evidence for not only the presence of encaged hydrides during ammonia synthesis but also the strong thermal and chemical stability of the hydride species in the Ru/C12A7 electride. Steady state isotopic transient kinetic analysis (SSITKA) of ammonia synthesis showed that the coverage of reactive intermediates increased significantly when the Ru particles were promoted by the electride form (coverage up to 84%) of the C12A7 support rather than the oxide form (coverage up to 15%). Such a drastic change in the intermediate coverage on the Ru surface is attributed to the positive role of electride support where the H2 poisoning effect is absent during ammonia synthesis over Ru. The finding of this work has significant implications for understanding catalysis by electride-based materials for ammonia synthesis and hydrogenation reactions in general.
RESUMO
We report on the structural, chemical, electrical, and thermal properties of n-type polycrystalline NbFeSb synthesized by induction melting of the elements. Although several studies on p-type conduction of this half-Heusler composition have recently been reported, including reports of relatively high thermoelectric properties, very little has been reported on the transport properties of n-type compositions. We combine transport property investigations together with short- and long-range structural data obtained by Mössbauer spectroscopy of iron-57 and antimony-121 and by neutron total scattering, as well as first-principles calculations. In our investigation, we show that n-type conduction can occur from antiphase boundaries in this material. This work is intended to provide a greater understanding of the fundamental properties of NbFeSb as this material continues to be of interest for potential thermoelectric applications.
RESUMO
Cation ordering/disordering in spinel oxides plays an essential role in the rich physical and chemical properties which are hallmarks of the structural archetype. A variety of cation-ordering motifs have been reported for spinel oxides with multiple cations residing on the octahedral site (or B-site). This has attracted tremendous attention from both experimental and theoretical communities in the last few decades. However, no unified view has been reached, presumably due to the richness of cation species and corresponding complex arrangements emergent in this large family of compounds. In this report, local cation-ordered ground states of (inverse) spinel oxides with two different cations on the octahedral site have been thoroughly investigated using neutron and X-ray total scattering, and a comprehensive theory has been proposed to explain the commonly observed cation-ordered polymorphs. It is found that a cation-zigzag-ordered structure (space group P4122) is the ground state for inverse spinel oxides with a pure or strong ionic lattice, while a cation-linear-ordered arrangement (space group Imma) emerges when one of the B-site cations forms very strong directional covalent bonds with lattice oxygen. The degree and length scale of cation ordering is strongly correlated with the charge and ionic radius difference between the two octahedral site cations. More complicated cation ordering schemes can be formed when there is a concomitant charge and orbital ordering which fall on a similar energy scale. This can lead to the formation of orbital-driven cation clusters or the broad concept of "molecules" in solid- state compounds. It is expected these findings will help to better understand the observed physical properties of spinel oxides and thus facilitate design strategies for improved functional materials.
RESUMO
Extreme conditions of complex materials often lead to a manifold of local environments that challenge characterization and require new advances at the intersection of modern experimental and theoretical techniques. In this contribution, highly caustic and viscous aqueous NaOD solutions were characterized with a combination of X-ray and neutron radial distribution function (RDF) analyses, molecular dynamics simulations and sub-ensemble analysis. While this system has been the topic of some study, the current work expands upon the state of knowledge regarding the extent to which water is perturbed within this chemically extreme solution. Further, we introduce analyses that goes beyond merely identifying the different local environments (ion solvation and coordination environments) that are present, but toward understanding their relative contributions to the ensemble solution RDF. This integrated approach yields unique insight into the experimental sensitivity of RDFs to changes in local geometries, the composition of solvation environments about ions, and the challenge of experimentally differentiating the ensemble of all superimposed local environments-a feature of increasing importance within the extreme condition of high ionic strength.
RESUMO
Layered δ-MnO2 (birnessites) are ubiquitous in nature and have also been reported to work as promising water oxidation catalysts or rechargeable alkali-ion battery cathodes when fabricated under appropriate conditions. Although tremendous effort has been spent on resolving the structure of natural/synthetic layered δ-MnO2 in the last few decades, no conclusive result has been reached. In this Article, we report an environmentally friendly route to synthesizing homogeneous Cu-rich layered δ-MnO2 nanoflowers in large scale. The local and average structure of synthetic Cu-rich layered δ-MnO2 has been successfully resolved from combined Mn/Cu K-edge extended X-ray fine structure spectroscopy and X-ray and neutron total scattering analysis. It is found that appreciable amounts (â¼8%) of Mn vacancies are present in the MnO2 layer and Cu2+ occupies the interlayer sites above/below the vacant Mn sites. Effective hydrogen bonding among the interlayer water molecules and adjacent layer O ions has also been observed for the first time. These hydrogen bonds are found to play the key role in maintaining the intermediate and long-range stacking coherence of MnO2 layers. Quantitative analysis of the turbostratic stacking disorder in this compound was achieved using a supercell approach coupled with anisotropic particle-size-effect modeling. The present method is expected to be generally applicable to the structural study of other technologically important nanomaterials.
RESUMO
The role of organic molecular cations in the high-performance perovskite photovoltaic absorbers, methylammonium lead iodide (MAPbI3) and formamidinium lead iodide (FAPbI3), has been an enigmatic subject of great interest. Beyond aiding in the ease of processing of thin films for photovoltaic devices, there have been suggestions that many of the remarkable properties of the halide perovskites can be attributed to the dipolar nature and the dynamic behavior of these cations. Here, we establish the dynamics of the molecular cations in FAPbI3 between 4 K and 340 K and the nature of their interaction with the surrounding inorganic cage using a combination of solid state nuclear magnetic resonance and dielectric spectroscopies, neutron scattering, calorimetry, and ab initio calculations. Detailed comparisons with the reported temperature dependence of the dynamics of MAPbI3 are then carried out which reveal the molecular ions in the two different compounds to exhibit very similar rotation rates (≈8 ps) at room temperature, despite differences in other temperature regimes. For FA, rotation about the N···N axis, which reorients the molecular dipole, is the dominant motion in all phases, with an activation barrier of ≈21 meV in the ambient phase, compared to ≈110 meV for the analogous dipole reorientation of MA. Geometrical frustration of the molecule-cage interaction in FAPbI3 produces a disordered γ-phase and subsequent glassy freezing at yet lower temperatures. Hydrogen bonds suggested by atom-atom distances from neutron total scattering experiments imply a substantial role for the molecules in directing structure and dictating properties. The temperature dependence of reorientation of the dipolar molecular cations systematically described here can clarify various hypotheses including those of large-polaron charge transport and fugitive electron spin polarization that have been invoked in the context of these unusual materials.
RESUMO
We study by means of bulk and local probes the d-metal alloy Ni_{1-x}V_{x} close to the quantum critical concentration, x_{c}≈11.6%, where the ferromagnetic transition temperature vanishes. The magnetization-field curve in the ferromagnetic phase takes an anomalous power-law form with a nonuniversal exponent that is strongly x dependent and mirrors the behavior in the paramagnetic phase. Muon spin rotation experiments demonstrate inhomogeneous magnetic order and indicate the presence of dynamic fluctuating magnetic clusters. These results provide strong evidence for a quantum Griffiths phase on the ferromagnetic side of the quantum phase transition.
RESUMO
The cubic semiconducting compounds APd3O4 (A = Ca, Sr) can be hole-doped by Na substitution on the A site and driven toward more conducting states. This process has been followed here by a number of experimental techniques to understand the evolution of electronic properties. While an insulator-to-metal transition is observed in Ca1-xNaxPd3O4 for x ≥ 0.15, bulk metallic behavior is not observed for Sr1-xNaxPd3O4 up to x = 0.20. Given the very similar crystal and (calculated) electronic structures of the two materials, the distinct behavior is a matter of interest. We present evidence of local disorder in the A = Sr materials through the analysis of the neutron pair distribution function, which is potentially at the heart of the distinct behavior. Solid-state 23Na nuclear magnetic resonance studies additionally suggest a percolative insulator-to-metal transition mechanism, wherein presumably small regions with a signal resembling metallic NaPd3O4 form almost immediately upon Na substitution, and this signal grows monotonically with substitution. Some signatures of increased local disorder and a propensity for Na clustering are seen in the A = Sr compounds.
RESUMO
We present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a â¼1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. The Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.
RESUMO
Short-range investigation by means of variable-temperature neutron total scattering and pair distribution function analysis revealed that the local environment around the methylammonium (MA) cation in MAPbBr3 hybrid perovskite is maintained through the different phase transitions observed as a function of temperature. In addition, the orthorhombic distortion of the lattice is present at any temperature. Local structure around MA changes from static to configurationally averaged or dynamic with temperature but the local structure of the low-temperature orthorhombic phase is preserved.
RESUMO
Hastening the progress of rechargeable metal-air batteries and hydrogen fuel cells necessitates the advancement of economically feasible, earth-abundant, inexpensive, and efficient electrocatalysts facilitating both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Herein, a recently reported family of nano (5A1/5)Co2O4 (A = combinations of transition metals, Mg, Mn, Fe, Ni, Cu, and Zn) compositionally complex oxides (CCOs) [Wang et al., Chemistry of Materials, 2023,35 (17), 7283-7291.] are studied as bifunctional OER and ORR electrocatalysts. Among the different low-temperature soft-templating samples, those subjected to 600 °C postannealing heat treatment exhibit superior performance in alkaline media. One specific composition (Mn0.2Fe0.2Ni0.2Cu0.2Zn0.2)Co2O4 exhibited an exceptional overpotential (260 mV at 10 mA cm-2) for the OER, a favorable Tafel slope of 68 mV dec-1, excellent onset potential (0.9 V) for the ORR, and lower than 6% H2O2 yields over a potential range of 0.2 to 0.8 V vs the reversible hydrogen electrode. Furthermore, this catalyst displayed stability over a 22 h chronoamperometry measurement, as confirmed by X-ray photoelectron spectroscopy analysis. Considering the outstanding performance, the low cost and scalability of the synthesis method, and the demonstrated tunability through chemical substitutions and processing variables, CCO ACo2O4 spinel oxides are highly promising candidates for future sustainable electrocatalytic applications.
RESUMO
Developing highly active and stable electrocatalysts for the oxygen evolution reaction (OER) is key to improving the efficiency and practical application of various sustainable energy technologies including water electrolysis, CO2 reduction, and metal air batteries. Here, we use evaporation-induced self-assembly (EISA) to synthesize highly porous fluorite nanocatalysts with a high surface area. In this study, we demonstrate that a 50% rare-earth cation substitution for Ce in the CeO2 fluorite lattice improves the OER activity and stability by introducing oxygen vacancies into the host lattice, which results in a decrease in the adsorption energy of the OH* intermediate in the OER. Among the binary fluorite compositions investigated, Nd2Ce2O7 is shown to display the lowest OER overpotential of 243 mV, achieved at a current density of 10 mA cm-2, and excellent cycling stability in an alkaline medium. Importantly, we demonstrate that rare-earth oxide OER electrocatalysts with high activity and stability can be achieved using the EISA synthesis route without the incorporation of transition and noble metals.