RESUMO
Researchers worldwide are taking advantage of novel, commercially available, technologies, such as ion mobility mass spectrometry (IM-MS), for metabolomics and lipidomics applications in a variety of fields including life, biomedical, and food sciences. IM-MS provides three main technical advantages over traditional LC-MS workflows. Firstly, in addition to mass, IM-MS allows collision cross-section values to be measured for metabolites and lipids, a physicochemical identifier related to the chemical shape of an analyte that increases the confidence of identification. Second, IM-MS increases peak capacity and the signal-to-noise, improving fingerprinting as well as quantification, and better defining the spatial localization of metabolites and lipids in biological and food samples. Third, IM-MS can be coupled with various fragmentation modes, adding new tools to improve structural characterization and molecular annotation. Here, we review the state-of-the-art in IM-MS technologies and approaches utilized to support metabolomics and lipidomics applications and we assess the challenges and opportunities in this growing field.
Assuntos
Espectrometria de Mobilidade Iônica , Lipidômica , Espectrometria de Mobilidade Iônica/métodos , Lipídeos/análise , Espectrometria de Massas/métodos , Metabolômica/métodosRESUMO
Lipid-lowering therapies are widely used to prevent the development of atherosclerotic cardiovascular disease (ASCVD) and related mortality worldwide. "Omics" technologies have been successfully applied in recent decades to investigate the mechanisms of action of these drugs, their pleiotropic effects, and their side effects, aiming to identify novel targets for future personalized medicine with an improvement of the efficacy and safety associated with the treatment. Pharmacometabolomics is a branch of metabolomics that is focused on the study of drug effects on metabolic pathways that are implicated in the variation of response to the treatment considering also the influences from a specific disease, environment, and concomitant pharmacological therapies. In this review, we summarized the most significant metabolomic studies on the effects of lipid-lowering therapies, including the most commonly used statins and fibrates to novel drugs or nutraceutical approaches. The integration of pharmacometabolomics data with the information obtained from the other "omics" approaches could help in the comprehension of the biological mechanisms underlying the use of lipid-lowering drugs in view of defining a precision medicine to improve the efficacy and reduce the side effects associated with the treatment.
Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hipolipemiantes , Medicina de Precisão , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/tratamento farmacológico , LipídeosRESUMO
Triple-negative breast cancer (TNBC) is a very aggressive disease even in its early stages and is characterized by a severe prognosis. Neoadjuvant chemotherapy is one of the milestones of treatment, and paclitaxel (PTX) is among the most active drugs used in this setting. However, despite its efficacy, peripheral neuropathy occurs in approximately 20-25% of cases and represents the dose-limiting toxicity of this drug. New deliverable strategies to ameliorate drug delivery and reduce side effects are keenly awaited to improve patients' outcomes. Mesenchymal stromal cells (MSCs) have recently been demonstrated as promising drug delivery vectors for cancer treatment. The aim of the present preclinical study is to explore the possibility of a cell therapy approach based on the use of MSCs loaded with PTX to treat TNBC-affected patients. For this purpose, we in vitro evaluated the viability, migration and colony formation of two TNBC cell lines, namely, MDA-MB-231 and BT549, treated with MSC-PTX conditioned medium (MSC-CM PTX) in comparison with both CM of MSCs not loaded with PTX (CTRL) and free PTX. We observed stronger inhibitory effects on survival, migration and tumorigenicity for MSC-CM PTX than for CTRL and free PTX in TNBC cell lines. Further studies will provide more information about activity and potentially open the possibility of using this new drug delivery vector in the context of a clinical study.
Assuntos
Células-Tronco Mesenquimais , Neoplasias de Mama Triplo Negativas , Humanos , Paclitaxel/uso terapêutico , Neoplasias de Mama Triplo Negativas/metabolismo , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Linhagem Celular Tumoral , Células-Tronco Mesenquimais/metabolismoRESUMO
Mass spectrometry imaging (MSI) is an emerging technology that is capable of mapping various biomolecules within their native spatial context, and performing spatial multiomics on formalin-fixed paraffin-embedded (FFPE) tissues may further increase the molecular characterization of pathological states. Here we present a novel workflow which enables the sequential MSI of lipids, N-glycans, and tryptic peptides on a single FFPE tissue section and highlight the enhanced molecular characterization that is offered by combining the multiple spatial omics data sets. In murine brain and clear cell renal cell carcinoma (ccRCC) tissue, the three molecular levels provided complementary information and characterized different histological regions. Moreover, when the spatial omics data was integrated, the different histopathological regions of the ccRCC tissue could be better discriminated with respect to the imaging data set of any single omics class. Taken together, these promising findings demonstrate the capability to more comprehensively map the molecular complexity within pathological tissue.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Humanos , Camundongos , Inclusão em Parafina , Fixação de Tecidos/métodos , Formaldeído/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Peptídeos/análise , Polissacarídeos/química , Neoplasias Renais/genética , LipídeosRESUMO
Arrhythmogenic cardiomyopathy (ACM) is a genetic disease associated with sudden cardiac death and cardiac fibro-fatty replacement. Over the last years, several works have demonstrated that different epigenetic enzymes can affect not only gene expression changes in cardiac diseases but also cellular metabolism. Specifically, the histone acetyltransferase GCN5 is known to facilitate adipogenesis and modulate cardiac metabolism in heart failure. Our group previously demonstrated that human primary cardiac stromal cells (CStCs) contribute to adipogenesis in the ACM pathology. Thus, this study aims to evaluate the role of GCN5 in ACM intracellular lipid accumulation. To do so, CStCs were obtained from right ventricle biopsies of ACM patients and from samples of healthy cadaveric donors (CTR). GCN5 expression was increased both in ex vivo and in vitro ACM samples compared to CTR. When GCN5 expression was silenced or pharmacologically inhibited by the administration of MB-3, we observed a reduction in lipid accumulation and a mitigation of reactive oxygen species (ROS) production in ACM CStCs. In agreement, transcriptome analysis revealed that the presence of MB-3 modified the expression of pathways related to cellular redox balance. Altogether, our findings suggest that GCN5 inhibition reduces fat accumulation in ACM CStCs, partially by modulating intracellular redox balance pathways.
Assuntos
Displasia Arritmogênica Ventricular Direita , Adipogenia/fisiologia , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/metabolismo , Displasia Arritmogênica Ventricular Direita/patologia , Morte Súbita Cardíaca/patologia , Humanos , Lipídeos , Células Estromais/metabolismoRESUMO
Neural tissue has high metabolic requirements. Following spinal cord injury (SCI), the damaged tissue suffers from a severe metabolic impairment, which aggravates axonal degeneration and neuronal loss. Impaired cellular energetic, tricarboxylic acid (TCA) cycle and oxidative phosphorylation metabolism in neuronal cells has been demonstrated to be a major cause of neural tissue death and regeneration failure following SCI. Therefore, rewiring the spinal cord cell metabolism may be an innovative therapeutic strategy for the treatment of SCI. In this study, we evaluated the therapeutic effect of the recovery of oxidative metabolism in a mouse model of severe contusive SCI. Oral administration of TCA cycle intermediates, co-factors, essential amino acids, and branched-chain amino acids was started 3 days post-injury and continued until the end of the experimental procedures. Metabolomic, immunohistological, and biochemical analyses were performed on the injured spinal cord sections. Administration of metabolic precursors enhanced spinal cord oxidative metabolism. In line with this metabolic shift, we observed the activation of the mTORC1 anabolic pathway, the increase in mitochondrial mass, and ROS defense which effectively prevented the injury-induced neural cell apoptosis in treated animals. Consistently, we found more choline acetyltransferase (ChAT)-expressing motor neurons and increased neurofilament-positive corticospinal axons in the spinal cord parenchyma of the treated mice. Interestingly, oral administration of the metabolic precursors increased the number of activated microglia expressing the CD206 marker suggestive of a pro-resolutive, M2-like phenotype. These molecular and histological modifications observed in treated animals ultimately led to a significant, although partial, improvement of the motor functions. Our data demonstrate that rewiring the cellular metabolism can represent an effective strategy to treat SCI.
Assuntos
Microglia , Traumatismos da Medula Espinal , Animais , Axônios/fisiologia , Metabolismo Energético , Camundongos , Microglia/metabolismo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologiaRESUMO
Platelets (PLTs) deteriorate over time when stored within blood banks through a biological process known as PLT storage lesion (PSL). Here, we describe the refinement of the biochemical model of PLT metabolism, iAT-PLT-636, and its application to describe and investigate changes in metabolism during PLT storage. Changes in extracellular acetate and citrate were measured in buffy coat and apheresis PLT units over 10 days of storage in the PLT additive solution T-Sol. Metabolic network analysis of these data was performed alongside our prior metabolomics data to describe the metabolism of fresh (days 1-3), intermediate (days 4-6), and expired (days 7-10) PLTs. Changes in metabolism were studied by comparing metabolic model flux predictions of iAT-PLT-636 between stages and between collection methods. Extracellular acetate and glucose contribute most to central carbon metabolism in PLTs. The anticoagulant citrate is metabolized in apheresis-stored PLTs and is converted into aconitate and, to a lesser degree, malate. The consumption of nutrients changes during storage and reflects altered PLT activation profiles following their collection. Irrespective of the collection method, a slowdown in oxidative phosphorylation takes place, consistent with mitochondrial dysfunction during PSL. Finally, the main contributors to intracellular ammonium and NADPH are highlighted. Future optimization of flux through these pathways provides opportunities to address intracellular pH changes and reactive oxygen species, which are both of importance to PSL. The metabolic models provide descriptions of PLT metabolism at steady state and represent a platform for future PLT metabolic research.
Assuntos
Plaquetas/metabolismo , Preservação de Sangue , Metaboloma , Metabolômica , Ácido Aconítico/metabolismo , Amônia/metabolismo , Plaquetas/citologia , Ácido Cítrico/metabolismo , Humanos , Soluções Farmacêuticas/farmacologia , Espécies Reativas de Oxigênio/metabolismoRESUMO
The temperature dependence of biological processes has been studied at the levels of individual biochemical reactions and organism physiology (e.g. basal metabolic rates) but has not been examined at the metabolic network level. Here, we used a systems biology approach to characterize the temperature dependence of the human red blood cell (RBC) metabolic network between 4 and 37 °C through absolutely quantified exo- and endometabolomics data. We used an Arrhenius-type model (Q10) to describe how the rate of a biochemical process changes with every 10 °C change in temperature. Multivariate statistical analysis of the metabolomics data revealed that the same metabolic network-level trends previously reported for RBCs at 4 °C were conserved but accelerated with increasing temperature. We calculated a median Q10 coefficient of 2.89 ± 1.03, within the expected range of 2-3 for biological processes, for 48 individual metabolite concentrations. We then integrated these metabolomics measurements into a cell-scale metabolic model to study pathway usage, calculating a median Q10 coefficient of 2.73 ± 0.75 for 35 reaction fluxes. The relative fluxes through glycolysis and nucleotide metabolism pathways were consistent across the studied temperature range despite the non-uniform distributions of Q10 coefficients of individual metabolites and reaction fluxes. Together, these results indicate that the rate of change of network-level responses to temperature differences in RBC metabolism is consistent between 4 and 37 °C. More broadly, we provide a baseline characterization of a biochemical network given no transcriptional or translational regulation that can be used to explore the temperature dependence of metabolism.
Assuntos
Eritrócitos/metabolismo , Metabolômica/métodos , Temperatura , Glicólise , Humanos , Técnicas In VitroRESUMO
Metabolomic investigations of packed red blood cells (RBCs) stored under refrigerated conditions in saline adenine glucose mannitol (SAGM) additives have revealed the presence of 3 distinct metabolic phases, occurring on days 0-10, 10-18, and after day 18 of storage. Here we used receiving operating characteristics curve analysis to identify biomarkers that can differentiate between the 3 metabolic states. We first recruited 24 donors and analyzed 308 samples coming from RBC concentrates stored in SAGM and additive solution 3. We found that 8 extracellular compounds (lactic acid, nicotinamide, 5-oxoproline, xanthine, hypoxanthine, glucose, malic acid, and adenine) form the basis for an accurate classification/regression model and are able to differentiate among the metabolic phases. This model was then validated by analyzing an additional 49 samples obtained by preparing 7 new RBC concentrates in SAGM. Despite the technical variability associated with RBC processing strategies, verification of these markers was independently confirmed in 2 separate laboratories with different analytical setups and different sample sets. The 8 compounds proposed here highly correlate with the metabolic age of packed RBCs, and can be prospectively validated as biomarkers of the RBC metabolic lesion.
Assuntos
Biomarcadores/sangue , Preservação de Sangue/métodos , Eritrócitos/citologia , Eritrócitos/metabolismo , Adulto , Temperatura Baixa , Envelhecimento Eritrocítico/fisiologia , Feminino , Humanos , Técnicas In Vitro , Masculino , Metaboloma , Pessoa de Meia-Idade , Modelos Biológicos , Estudos Prospectivos , Análise de Regressão , Fatores de Tempo , Adulto JovemRESUMO
BACKGROUND: Alternate sugar metabolism during red blood cell (RBC) storage is not well understood. Here we report fructose and mannose metabolism in RBCs during cold storage in SAGM and the impact that these monosaccharides have on metabolic biomarkers of RBC storage lesion. STUDY DESIGN AND METHODS: RBCs were stored in SAGM containing uniformly labeled 13 C-fructose or 13 C-mannose at 9 or 18 mmol/L concentration for 25 days. RBCs and media were sampled at 14 time points during storage and analyzed using ultraperformance liquid chromatography-mass spectrometry. Blood banking quality assurance measurements were performed. RESULTS: Red blood cells incorporated fructose and mannose during cold storage in the presence of glucose. Mannose was metabolized in preference to glucose via glycolysis. Fructose lowered adenosine triphosphate (ATP) levels and contributed little to ATP maintenance when added to SAGM. Both monosaccharides form the advanced glycation end product glycerate. Mannose activates enzymes in the RBC that take part in glycan synthesis. CONCLUSIONS: Fructose or mannose addition to RBC SAGM concentrates may not offset the shift in metabolism of RBCs that occurs after 10 days of storage. Fructose and mannose metabolism at 4°C in SAGM reflects their metabolism at physiologic temperature. Glycerate excretion is a measure of protein deglycosylation activity in stored RBCs. No cytoprotective effect was observed upon the addition of either fructose or mannose to SAGM.
Assuntos
Criopreservação , Eritrócitos/metabolismo , Frutose/metabolismo , Manose/metabolismo , Isótopos de Carbono/metabolismo , Cromatografia Líquida , Ácidos Glicéricos/análise , Glicosilação , Humanos , Espectrometria de Massas , Fatores de TempoRESUMO
Volumetric absorptive microsampling (VAMS) is a novel approach that allows single-drop (10 µL) blood collection. Integration of VAMS with mass spectrometry (MS)-based untargeted metabolomics is an attractive solution for both human and animal studies. However, to boost the use of VAMS in metabolomics, key pre-analytical questions need to be addressed. Therefore, in this work, we integrated VAMS in a MS-based untargeted metabolomics workflow and investigated pre-analytical strategies such as sample extraction procedures and metabolome stability at different storage conditions. We first evaluated the best extraction procedure for the polar metabolome and found that the highest number and amount of metabolites were recovered upon extraction with acetonitrile/water (70:30). In contrast, basic conditions (pH 9) resulted in divergent metabolite profiles mainly resulting from the extraction of intracellular metabolites originating from red blood cells. In addition, the prolonged storage of blood samples at room temperature caused significant changes in metabolome composition, but once the VAMS devices were stored at - 80 °C, the metabolome remained stable for up to 6 months. The time used for drying the sample did also affect the metabolome. In fact, some metabolites were rapidly degraded or accumulated in the sample during the first 48 h at room temperature, indicating that a longer drying step will significantly change the concentration in the sample. Graphical abstract Volumetric absorptive microsampling (VAMS) is a novel technology that allows single-drop blood collection and, in combination with mass spectrometry (MS)-based untargeted metabolomics, represents an attractive solution for both human and animal studies. In this work, we integrated VAMS in a MS-based untargeted metabolomics workflow and investigated pre-analytical strategies such as sample extraction procedures and metabolome stability at different storage conditions. The latter revealed that prolonged storage of blood samples at room temperature caused significant changes in metabolome composition, but if VAMS devices were stored at - 80 °C, the metabolome remained stable for up to 6 months.
Assuntos
Coleta de Amostras Sanguíneas/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Animais , Preservação de Sangue/métodos , Teste em Amostras de Sangue Seco/métodos , Humanos , Metaboloma , Fluxo de TrabalhoRESUMO
Twenty-eight sponge specimens were collected at a shallow water hydrothermal vent site north of Iceland. Extracts were prepared and tested in vitro for cytotoxic activity, and eight of them were shown to be cytotoxic. A mass spectrometry (MS)-based metabolomics approach was used to determine the chemical composition of the extracts. This analysis highlighted clear differences in the metabolomes of three sponge specimens, and all of them were identified as Haliclona (Rhizoniera) rosea (Bowerbank, 1866). Therefore, these specimens were selected for further investigation. Haliclona rosea metabolomes contained a class of potential key compounds, the 3-alkyl pyridine alkaloids (3-APA) responsible for the cytotoxic activity of the fractions. Several 3-APA compounds were tentatively identified including haliclamines, cyclostellettamines, viscosalines and viscosamines. Among these compounds, cyclostellettamine P was tentatively identified for the first time by using ion mobility MS in time-aligned parallel (TAP) fragmentation mode. In this work, we show the potential of applying metabolomics strategies and in particular the utility of coupling ion mobility with MS for the molecular characterization of sponge specimens.
Assuntos
Alcaloides/toxicidade , Fontes Hidrotermais/química , Metaboloma/efeitos dos fármacos , Poríferos/efeitos dos fármacos , Poríferos/metabolismo , Piridinas/toxicidade , Alcaloides/química , Animais , Haliclona/química , Haliclona/metabolismo , Islândia , Metabolômica/métodos , Piridinas/química , Piridinas/metabolismo , Compostos de Piridínio/química , Compostos de Piridínio/metabolismo , Água/químicaRESUMO
Alzheimer's disease (AD) is the most common cause of adult dementia. Yet the complete set of molecular changes accompanying this inexorable, neurodegenerative disease remains elusive. Here we adopted an unbiased lipidomics and metabolomics approach to surveying frozen frontal cortex samples from clinically characterized AD patients (n = 21) and age-matched controls (n = 19), revealing marked molecular differences between them. Then, by means of metabolomic pathway analysis, we incorporated the novel molecular information into the known biochemical pathways and compared it with the results of a metabolomics meta-analysis of previously published AD research. We found six metabolic pathways of the central metabolism as well as glycerophospholipid metabolism predominantly altered in AD brains. Using targeted metabolomics approaches and MS imaging, we confirmed a marked dysregulation of mitochondrial aspartate metabolism. The altered metabolic pathways were further integrated with clinical data, showing various degrees of correlation with parameters of dementia and AD pathology. Our study highlights specific, altered biochemical pathways in the brains of individuals with AD compared with those of control subjects, emphasizing dysregulation of mitochondrial aspartate metabolism and supporting future venues of investigation.
Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Metaboloma , Metabolômica/métodos , Mitocôndrias/metabolismo , Idoso , Idoso de 80 Anos ou mais , Autopsia , Feminino , Humanos , Masculino , Redes e Vias Metabólicas , Mudanças Depois da Morte , Espectrometria de Massas por Ionização por ElectrosprayRESUMO
BACKGROUND: Red blood cells (RBCs) are routinely stored and transfused worldwide. Recently, metabolomics have shown that RBCs experience a three-phase metabolic decay process during storage, resulting in the definition of three distinct metabolic phenotypes, occurring between Days 1 and 10, 11 and 17, and 18 and 46. Here we use metabolomics and stable isotope labeling analysis to study adenine metabolism in RBCs. STUDY DESIGN AND METHODS: A total of 6 units were prepared in SAGM or modified additive solutions (ASs) containing 15 N5 -adenine. Three of them were spiked with 15 N5 -adenine on Days 10, 14, and 17 during storage. Each unit was sampled 10 times spanning Day 1 to Day 32. At each time point metabolic profiling was performed. RESULTS: We increased adenine concentration in the AS and we pulsed the adenine concentration during storage and found that in both cases the RBCs' main metabolic pathways were not affected. Our data clearly show that RBCs cannot consume adenine after 18 days of storage, even if it is still present in the storage solution. However, increased levels of adenine influenced S-adenosylmethionine metabolism. CONCLUSION: In this work, we have studied in detail the metabolic fate of adenine during RBC storage in SAGM. Adenine is one of the main substrates used by RBCs, but the metabolic shift observed during storage is not caused by an absence of adenine later in storage. The rate of adenine consumption strongly correlated with duration of storage but not with the amount of adenine present in the AS.
Assuntos
Adenina/metabolismo , Preservação de Sangue/métodos , Eritrócitos/metabolismo , Glucose , Manitol , Cloreto de Sódio , Humanos , Marcação por Isótopo , Metabolômica , Fatores de TempoRESUMO
BACKGROUND: There has been interest in determining whether older red blood cell (RBC) units have negative clinical effects. Numerous observational studies have shown that older RBC units are an independent factor for patient mortality. However, recently published randomized clinical trials have shown no difference of clinical outcome for patients receiving old or fresh RBCs. An overlooked but essential issue in assessing RBC unit quality and ultimately designing the necessary clinical trials is a metric for what constitutes an old or fresh RBC unit. STUDY DESIGN AND METHODS: Twenty RBC units were profiled using quantitative metabolomics over 42 days of storage in SAGM with 3- to 4-day time intervals. Metabolic pathway usage during storage was assessed using systems biology methods. The detected time intervals of the metabolic states were compared to clinical outcomes. RESULTS: Using multivariate statistics, we identified a nonlinear decay process exhibiting three distinct metabolic states (Days 0-10, 10-17, and 17-42). Hematologic variables traditionally measured in the transfusion setting (e.g., pH, hemolysis, RBC indices) did not distinguish these three states. Systemic changes in pathway usage occurred between the three states, with key pathways changing in both magnitude and direction. Finally, an association was found between the time periods of the metabolic states with the clinical outcomes of more than 280,000 patients in the country of Denmark transfused over the past 15 years and endothelial damage markers in healthy volunteers undergoing autologous transfusions. CONCLUSION: The state of RBC metabolism may be a better indicator of cellular quality than traditional hematologic variables.
Assuntos
Biomarcadores/metabolismo , Endotélio Vascular/patologia , Transfusão de Eritrócitos/normas , Eritrócitos/metabolismo , Metaboloma , Biomarcadores/sangue , Preservação de Sangue/métodos , Preservação de Sangue/normas , Dinamarca , Endotélio Vascular/metabolismo , Eritrócitos/citologia , Voluntários Saudáveis , Humanos , Islândia , Masculino , Metabolômica , Controle de Qualidade , Resultado do TratamentoRESUMO
In this work, environmental heavy metal contamination in the Val d'Agri area of Southern Italy was monitored, measuring the accumulation of 18 heavy metals (U, Hg, Pb, Cd, As, Sr, Sn, V, Ni, Cr, Mo, Co, Cu, Zn, Ca, Mn, Fe, and Al) in the organs of animals raised in the surrounding area (kidney, lung, and liver of bovine and ovine species). Val d'Agri features various oil processing centers which are potentially a significant source of environmental pollution, making it essential to perform studies that will outline the state of the art on which any recovery plans and interventions may be developed. The analysis was carried out using official and accredited analytical methods based on inductively coupled plasma mass spectrometry, and the measurements were statistically processed in order to give a contribution to risk assessment. Even though five samples showed Pb and Cd concentrations above the limits defined in the European Commission Regulation (EC) No 1881/2006, the mean concentrations of most elements suggest that contamination in this area is low. Consequently, these results also suggest that there is no particular risk for human exposure to toxic trace elements. Nevertheless, the findings of this work confirm that element accumulation in ovine species is correlated with geographical livestock area. Therefore, ovine-specific organs might be used as bioindicators for monitoring contamination by specific toxic elements in exposed areas.
Assuntos
Poluentes Ambientais/análise , Rim/química , Fígado/química , Pulmão/química , Metais Pesados/análise , Campos de Petróleo e Gás , Animais , Bovinos , Monitoramento Ambiental/métodos , Itália , Medição de Risco , OvinosRESUMO
Here, we propose a novel strategy that combines a typical ultra high performance liquid chromatography (UHPLC), data-independent mass spectrometry (MS(E)) workflow with traveling wave ion mobility (TWIM) and UV detection, to improve the characterization of carotenoids and chlorophylls in complex biological matrices. UV detection selectively highlighted pigments absorbing at specific wavelengths, while TWIM coupled to MS was used to maximize the peak capacity. We applied this approach for the analysis of pigments in different microalgae samples, including Chlorella vulgaris, Dunaliella salina, and Phaeodactylum tricornutum. Using UHPLC-UV-MS(E) information (retention time, absorbance at 450 nm, and accurate masses of precursors and product ions), we tentatively identified 26 different pigments (carotenes, chlorophylls, and xanthophylls). By adding TWIM information (collision cross sections), we further resolved 5 isobaric pigments, not resolved by UHPLC-UV-MS(E) alone. The characterization of the molecular phenotypes allowed us to differentiate the microalgae species. Our results demonstrate that a combination of TWIM and UV detection with traditional analytical approaches increases the selectivity and specificity of analysis, providing a new tool to characterize pigments in biological samples. We anticipate that such an analytical approach will be extended to other lipidomics and metabolomics applications.
Assuntos
Produtos Biológicos/análise , Cromatografia Líquida de Alta Pressão/métodos , Microalgas/classificação , Microalgas/metabolismo , Pigmentos Biológicos/análise , Espectrometria de Massas por Ionização por Electrospray/métodosRESUMO
Despite recent advances in analytical and computational chemistry, lipid identification remains a significant challenge in lipidomics. Ion-mobility spectrometry provides an accurate measure of the molecules' rotationally averaged collision cross-section (CCS) in the gas phase and is thus related to ionic shape. Here, we investigate the use of CCS as a highly specific molecular descriptor for identifying lipids in biological samples. Using traveling wave ion mobility mass spectrometry (MS), we measured the CCS values of over 200 lipids within multiple chemical classes. CCS values derived from ion mobility were not affected by instrument settings or chromatographic conditions, and they were highly reproducible on instruments located in independent laboratories (interlaboratory RSD < 3% for 98% of molecules). CCS values were used as additional molecular descriptors to identify brain lipids using a variety of traditional lipidomic approaches. The addition of CCS improved the reproducibility of analysis in a liquid chromatography-MS workflow and maximized the separation of isobaric species and the signal-to-noise ratio in direct-MS analyses (e.g., "shotgun" lipidomics and MS imaging). These results indicate that adding CCS to databases and lipidomics workflows increases the specificity and selectivity of analysis, thus improving the confidence in lipid identification compared to traditional analytical approaches. The CCS/accurate-mass database described here is made publicly available.
Assuntos
Encéfalo/metabolismo , Lipídeos/análise , Espectrometria de Massa de Íon Secundário/métodos , Idoso , Cromatografia Líquida , Humanos , Razão Sinal-RuídoRESUMO
BACKGROUND: Platelet concentrates (PCs) can be prepared using three methods: platelet (PLT)-rich plasma, apheresis, and buffy coat. The aim of this study was to obtain a comprehensive data set that describes metabolism of buffy coat-derived PLTs during storage and to compare it with a previously published parallel data set obtained for apheresis-derived PLTs. STUDY DESIGN AND METHODS: During storage we measured more than 150 variables in 8 PLT units, prepared by the buffy coat method. Samples were collected at seven different time points resulting in a data set containing more than 8000 measurements. This data set was obtained by combining a series of standard quality control assays to monitor the quality of stored PLTs and a deep coverage metabolomics study using liquid chromatography coupled with mass spectrometry. RESULTS: Stored PLTs showed a distinct metabolic transition occurring 4 days after their collection. The transition was evident in PLT produced by both production methods. Apheresis-derived PLTs showed a clearer phenotype of PLT activation during early days of storage. The activated phenotype of apheresis PLTs was accompanied by a higher metabolic activity, especially related to glycolysis and the tricarboxylic acid cycle. Moreover, the extent of the activation differed between bags resulting in interbag variability in the storage lesion of apheresis-prepared PLTs. This may be related to donor-related polymorphism. CONCLUSION: This study demonstrated two discrete metabolic phenotypes in stored PLTs prepared with both apheresis and buffy coat methods. PLT activation occurs during the first metabolic phenotype and might lead to a low reproducibility of the apheresis PCs.