RESUMO
Diabetes mellitus (DM) is a risk factor for developing active tuberculosis (TB) with a 3-fold increase in susceptibility and a 4-fold higher relapse rate. With increasing DM prevalence in TB endemic regions, understanding pathophysiological changes associated with DM-TB comorbidity is imperative. In this study, streptozotocin (STZ)-induced DM C57BL/6 mice were aerosol infected with low dose (100-120 CFU) Mycobacterium tuberculosis H37Rv. At 3 weeks post infection (w.p.i.), multiple tissue mycobacterial load and metabolites were profiled. The liver proteome of DM-TB and controls were analyzed using quantitative proteomics, and multi-omics data were integrated. DM-TB mice showed dysregulated multi-tissue (lungs, liver, brain, kidney and thigh muscle) metabolism. In contrast, the mycobacterial burden in the lung, spleen and liver was similar at 3 w.p.i. in DM-TB and TB groups. Enrichment analysis of deregulated liver metabolites (n = 20; log2DM-TB/TB>±1.0) showed significant perturbation in cysteine-methionine, glycine-serine, BCAA and fatty acid metabolism. 60 out of 1660 identified liver proteins showed deregulation (log2DM-TB/TB>±1.0) and contributed from perturbed cysteine-methionine metabolism corroborating metabolomics data. In addition, amino acid biosynthesis, retinol metabolism and polyol biosynthetic process were also differentially enriched in the livers of DM-TB groups. Global correlation analysis of liver metabolome and proteome data showed a strong association between aspartic acid, pyruvic acid, leucine and isoleucine with CYP450 enzymes involved in retinol metabolism, while iminodiacetic acid, isoleucine and γ-aminobutyric acid (GABA) strong positive correlation involved in cysteine metabolism. Targeting perturbed cysteine metabolism using micro molecules, like DL-Propargylglycine, might help prevent liver damage in DM-TB comorbid conditions.
Assuntos
Diabetes Mellitus Experimental , Tuberculose , Animais , Camundongos , Cisteína , Diabetes Mellitus Experimental/complicações , Isoleucina , Fígado , Metionina , Camundongos Endogâmicos C57BL , Proteoma , Tuberculose/complicações , Vitamina A , FemininoRESUMO
BACKGROUND: Chemoresistance is one of the major factors for treatment failure in OSCC. Identifying key resistance triggering molecules will be useful strategy for developing novel treatment methods. METHODS: To identify the causative factors of chemoresistance, we performed RNA sequencing and global proteomic profiling of human OSCC lines presenting with sensitive, early and late cisplatin-resistance patterns. RESULTS: From the common set of dysregulated genes from both the analysis, RRBP1 was identified to be upregulated in both early and late cisplatin-resistant cells with respect to the sensitive counterpart. Analysis of OSCC patient sample indicates that RRBP1 expression is upregulated in chemotherapy-non-responder tumours as compared to chemotherapy-responder tumours. Genetic (knockout) or pharmacological (Radezolid, represses expression of RRBP1) inhibition of RRBP1 restores cisplatin-mediated cell death in chemo-resistant OSCC. Mechanistically, RRBP1 regulates Yes-associated protein1 (YAP1), a key protein in the Hippo pathway to induce chemoresistance. The PDC xenograft data suggests that knockout of RRBP1 induces cisplatin-mediated cell death and facilitates a significant reduction of tumour burden. CONCLUSION: Overall, our data suggests that (I) RRBP1 is a major driver of cisplatin-resistance in OSCC, (II) RRBP1 regulates YAP1 expression to mediate cisplatin-resistance, (III) Radezolid represses RRBP1 expression and (IV) targeting RRBP1 reverses cisplatin-induced chemoresistance in advanced OSCC.
Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Proteínas de Transporte/fisiologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Bucais/tratamento farmacológico , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Inativação de Genes , Células HEK293 , Via de Sinalização Hippo/efeitos dos fármacos , Via de Sinalização Hippo/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Phytochemicals with potential to competitively bind to the host receptors or inhibit SARS-CoV-2 replication, may prove to be useful as adjunct therapeutics for COVID-19. We profiled and investigated the phytochemicals of Rhododendron arboreum petals sourced from Himalayan flora, undertook in vitro studies and found it as a promising candidate against SARS-CoV-2. The phytochemicals were reported in various scientific investigations to act against a range of virus in vitro and in vivo, which prompted us to test against SARS-CoV-2. In vitro assays of R. arboreum petals hot aqueous extract confirmed dose dependent reduction in SARS-CoV-2 viral load in infected Vero E6 cells (80% inhibition at 1 mg/ml; IC50 = 173 µg/ml) and phytochemicals profiled were subjected to molecular docking studies against SARS CoV-2 target proteins. The molecules 5-O-Feruloyl-quinic acid, 3-Caffeoyl-quinic acid, 5-O-Coumaroyl-D-quinic acid, Epicatechin and Catechin showed promising binding affinity with SARS-CoV-2 Main protease (MPro; PDB ID: 6LU7; responsible for viral replication) and Human Angiotensin Converting Enzyme-2 (ACE2; PDB ID: 1R4L; mediate viral entry in the host). Molecular dynamics (MD) simulation of 5-O-Feruloyl-quinic acid, an abundant molecule in the extract complexed with the target proteins showed stable interactions. Taken together, the phytochemical profiling, in silico analysis and in vitro anti-viral assay revealed that the petals extract act upon MPro and may be inhibiting SARS-CoV-2 replication. This is the first report highlighting R. arboreum petals as a reservoir of antiviral phytochemicals with potential anti-SARS-CoV-2 activity using an in vitro system.