RESUMO
Recent theoretical and experimental studies of the interlayer Dzyaloshinskii-Moriya interaction (DMI) have sparked great interest in its implementation into practical magnetic random-access memory (MRAM) devices, due to its capability to mediate long-range chiral spin textures. So far, experimental reports focused on the observation of interlayer DMI, leaving the development of strategies to control interlayer DMI's magnitude unaddressed. Here, we introduce an azimuthal symmetry engineering protocol capable of additive/subtractive tuning of interlayer DMI through the control of wedge deposition of separate layers and demonstrate its capability to mediate field-free spin-orbit torque (SOT) magnetization switching in both orthogonally magnetized and synthetic antiferromagnetically coupled systems. Furthermore, we showcase that the spatial inhomogeneity brought about by wedge deposition can be suppressed by specific azimuthal engineering design, ideal for practical implementation. Our findings provide guidelines for effective manipulations of interlayer DMI strength, beneficial for the future design of SOT-MRAM or other spintronic devices utilizing interlayer DMI.
RESUMO
The spin Hall effect in heavy metals converts charge current into pure spin current, which can be injected into an adjacent ferromagnet to exert a torque. This spin-orbit torque (SOT) has been widely used to manipulate the magnetization in metallic ferromagnets. In the case of magnetic insulators (MIs), although charge currents cannot flow, spin currents can propagate, but current-induced control of the magnetization in a MI has so far remained elusive. Here we demonstrate spin-current-induced switching of a perpendicularly magnetized thulium iron garnet film driven by charge current in a Pt overlayer. We estimate a relatively large spin-mixing conductance and damping-like SOT through spin Hall magnetoresistance and harmonic Hall measurements, respectively, indicating considerable spin transparency at the Pt/MI interface. We show that spin currents injected across this interface lead to deterministic magnetization reversal at low current densities, paving the road towards ultralow-dissipation spintronic devices based on MIs.
RESUMO
We show that a direct current in a tantalum microstrip can induce steady-state magnetic oscillations in an adjacent nanomagnet through spin torque from the spin Hall effect (SHE). The oscillations are detected electrically via a magnetic tunnel junction (MTJ) contacting the nanomagnet. The oscillation frequency can be controlled using the MTJ bias to tune the magnetic anisotropy. In this 3-terminal device, the SHE torque and the MTJ bias therefore provide independent controls of the oscillation amplitude and frequency, enabling new approaches for developing tunable spin torque nano-oscillators.
RESUMO
Spin-orbit torques (SOTs) from transition metal dichalcogenide systems (TMDs) in conjunction with ferromagnetic materials are recently found to be attractive in spintronics for their versatile features. However, most of the previously studied crystalline TMDs are prepared by mechanical exfoliation, which limits their potentials for industrial applications. Here, we show that amorphous WTe2 heterostructures deposited by magnetron sputtering possess a sizable damping-like SOT efficiency of ξDLWTe2 ≈ 0.20 and low damping constant of α = 0.009 ± 0.001. Only an extremely low critical switching current density of Jc≈ 7.05 × 109 A/m2 is required to achieve SOT-driven magnetization switching. The SOT efficiency is further proved to depend on the W and Te relative compositions in the co-sputtered W100-xTex samples, from which a sign change of ξDLWTe2 is observed. In addition, the electronic transport in amorphous WTe2 is found to be semiconducting and is governed by a hopping mechanism. With the above advantages and rich tunability, amorphous and semiconducting WTe2 serves as a unique SOT source for future spintronics applications.
RESUMO
The spin-orbit torques (SOTs) generated from topological insulators (TIs) have gained increasing attention in recent years. These TIs, which are typically formed by epitaxially grown chalcogenides, possess extremely high SOT efficiencies and have great potential to be employed in next-generation spintronics devices. However, epitaxy of these chalcogenides is required to ensure the existence of the topologically protected surface state (TSS), which limits the feasibility of using these materials in industry. In this work, we show that nonepitaxial BixTe1-x/ferromagnet heterostructures prepared by conventional magnetron sputtering possess giant SOT efficiencies even without TSS. Through harmonic voltage measurement and hysteresis loop shift measurement, we find that the damping-like SOT efficiencies originated from the bulk spin-orbit interactions of such nonepitaxial heterostructures can reach values greater than 100% at room temperature. We further demonstrate current-induced SOT switching in these BixTe1-x-based heterostructures with thermally stable ferromagnetic layers, which indicates that such nonepitaxial chalcogenide materials can be potential efficient SOT sources in future SOT magnetic memory devices.
RESUMO
Magneto-optical Kerr effect (MOKE) is an efficient approach to probe surface magnetization in thin film samples. Here we present a wide-field MOKE technique that adopts a Köhler illumination scheme to characterize the current-induced damping-like spin-orbit torque (DL-SOT) in micron-sized and unpatterned magnetic heterostructures with perpendicular magnetic anisotropy. Through a current-induced hysteresis loop shift analysis, we quantify the DL-SOT efficiency of a Ta-based heterostructure with bar-shaped geometry, Hall-cross geometry, and unpatterned geometry to be |ξ DL | ≈ 0.08. The proposed wide-field MOKE approach therefore provides an instant and direct characterization of DL-SOT, without the need of any further interpretation on electrical signals.
RESUMO
Spin currents can apply useful torques in spintronic devices. The spin Hall effect has been proposed as a source of spin current, but its modest strength has limited its usefulness. We report a giant spin Hall effect (SHE) in ß-tantalum that generates spin currents intense enough to induce efficient spin-torque switching of ferromagnets at room temperature. We quantify this SHE by three independent methods and demonstrate spin-torque switching of both out-of-plane and in-plane magnetized layers. We furthermore implement a three-terminal device that uses current passing through a tantalum-ferromagnet bilayer to switch a nanomagnet, with a magnetic tunnel junction for read-out. This simple, reliable, and efficient design may eliminate the main obstacles to the development of magnetic memory and nonvolatile spin logic technologies.