Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 373, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878095

RESUMO

The lincoamide antibiotic lincomycin, derived from Streptomyces lincolnensis, is widely used for the treatment of infections caused by gram-positive bacteria. As a common global regulatory factor of GntR family, DasR usually exists as a regulatory factor that negatively regulates antibiotic synthesis in Streptomyces. However, the regulatory effect of DasR on lincomycin biosynthesis in S. lincolnensis has not been thoroughly investigated. The present study demonstrates that DasR functions as a positive regulator of lincomycin biosynthesis in S. lincolnensis, and its overexpression strain OdasR exhibits a remarkable 7.97-fold increase in lincomycin production compared to the wild-type strain. The effects of DasR overexpression could be attenuated by the addition of GlcNAc in the medium in S. lincolnensis. Combined with transcriptome sequencing and RT-qPCR results, it was found that most structural genes in GlcNAc metabolism and central carbon metabolism were up-regulated, but the lincomycin biosynthetic gene cluster (lmb) were down-regulated after dasR knock-out. However, DasR binding were detected with the DasR responsive elements (dre) of genes involved in GlcNAc metabolism pathway through electrophoretic mobility shift assay, while they were not observed in the lmb. These findings will provide novel insights for the genetic manipulation of S. lincolnensis to enhance lincomycin production. KEY POINTS: • DasR is a positive regulator that promotes lincomycin synthesis and does not affect spore production • DasR promotes lincomycin production through indirect regulation • DasR correlates with nutrient perception in S. lincolnensis.


Assuntos
Antibacterianos , Regulação Bacteriana da Expressão Gênica , Lincomicina , Streptomyces , Lincomicina/farmacologia , Lincomicina/biossíntese , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/efeitos dos fármacos , Antibacterianos/biossíntese , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Família Multigênica , Acetilglucosamina/metabolismo , Vias Biossintéticas/genética , Perfilação da Expressão Gênica
2.
FEMS Microbiol Lett ; 369(1)2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35896500

RESUMO

Taraxerol is an oleanane-type pentacyclic triterpenoid compound distributed in many plant species that has good effects on the treatment of inflammation and tumors. However, the taraxerol content in medicinal plants is low, and chemical extraction requires considerable energy and time, so taraxerol production is a problem. It is a promising strategy to produce taraxerol by applying recombinant microorganisms. In this study, a Saccharomyces cerevisiae strain WKde2 was constructed to produce taraxerol with a titer of 1.85 mg·l-1, and the taraxerol titer was further increased to 12.51 mg·l-1 through multiple metabolic engineering strategies. The endoplasmic reticulum (ER) size regulatory factor INO2, which was reported to increase squalene and cytochrome P450-mediated 2,3-oxidosqualene production, was overexpressed in this study, and the resultant strain WTK11 showed a taraxerol titer of 17.35 mg·l-1. Eventually, the highest reported titer of 59.55 mg·l-1 taraxerol was achieved in a 5 l bioreactor. These results will serve as a general strategy for the production of other triterpenoids in yeast.


Assuntos
Proteínas de Saccharomyces cerevisiae , Triterpenos , Engenharia Metabólica/métodos , Ácido Oleanólico/análogos & derivados , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Triterpenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA