Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Development ; 149(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35899600

RESUMO

Phosphatidylinositol (PI) 4,5-bisphosphate (PIP2) is involved in many biological functions. However, the mechanisms of PIP2 in collective cell migration remain elusive. This study highlights the regulatory role of cytidine triphosphate synthase (CTPsyn) in collective border cell migration through regulating the asymmetrical distribution of PIP2. We demonstrated that border cell clusters containing mutant CTPsyn cells suppressed migration. CTPsyn was co-enriched with Actin at the leading edge of the Drosophila border cell cluster where PIP2 was enriched, and this enrichment depended on the CTPsyn activity. Genetic interactions of border cell migration were found between CTPsyn mutant and genes in PI biosynthesis. The CTPsyn reduction resulted in loss of the asymmetric activity of endocytosis recycling. Also, genetic interactions were revealed between components of the exocyst complex and CTPsyn mutant, indicating that CTPsyn activity regulates the PIP2-related asymmetrical exocytosis activity. Furthermore, CTPsyn activity is essential for RTK-polarized distribution in the border cell cluster. We propose a model in which CTPsyn activity is required for the asymmetrical generation of PIP2 to enrich RTK signaling through endocytic recycling in collective cell migration.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Carbono-Nitrogênio Ligases , Movimento Celular/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo
2.
J Cell Sci ; 133(9)2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32184263

RESUMO

Under metabolic stress, cellular components can assemble into distinct membraneless organelles for adaptation. One such example is cytidine 5'-triphosphate synthase (CTPS, for which there are CTPS1 and CTPS2 forms in mammals), which forms filamentous structures under glutamine deprivation. We have previously demonstrated that histidine (His)-mediated methylation regulates the formation of CTPS filaments to suppress enzymatic activity and preserve the CTPS protein under glutamine deprivation, which promotes cancer cell growth after stress alleviation. However, it remains unclear where and how these enigmatic structures are assembled. Using CTPS-APEX2-mediated in vivo proximity labeling, we found that synaptosome-associated protein 29 (SNAP29) regulates the spatiotemporal filament assembly of CTPS along the cytokeratin network in a keratin 8 (KRT8)-dependent manner. Knockdown of SNAP29 interfered with assembly and relaxed the filament-induced suppression of CTPS enzymatic activity. Furthermore, APEX2 proximity labeling of keratin 18 (KRT18) revealed a spatiotemporal association of SNAP29 with cytokeratin in response to stress. Super-resolution imaging suggests that during CTPS filament formation, SNAP29 interacts with CTPS along the cytokeratin network. This study links the cytokeratin network to the regulation of metabolism by compartmentalization of metabolic enzymes during nutrient deprivation.


Assuntos
Carbono-Nitrogênio Ligases , Histidina , Animais , Citidina Trifosfato , Histidina/genética , Queratinas
3.
J Cell Sci ; 128(19): 3550-5, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26303200

RESUMO

Cytidine triphosphate synthase (CTPS) and inosine monophosphate dehydrogenase (IMPDH) (both of which have two isoforms) can form fiber-like subcellular structures termed 'cytoophidia' under certain circumstances in mammalian cells. Although it has been shown that filamentation of CTPS downregulates its activity by disturbing conformational changes, the activity of IMPDH within cytoophidia is still unclear. Most previous IMPDH cytoophidium studies were performed under conditions involving inhibitors that impair GTP synthesis. Here, we show that IMPDH forms cytoophidia without inhibition of GTP synthesis. First, we find that an elevated intracellular CTP concentration or treatment with 3'-deazauridine, a CTPS inhibitor, promotes IMPDH cytoophidium formation and increases the intracellular GTP pool size. Moreover, restriction of cell growth triggers the disassembly of IMPDH cytoophidia, implying that their presence is correlated with active cell metabolism. Finally, we show that the presence of IMPDH cytoophidia in mouse pancreatic islet cells might correlate with nutrient uptake in the animal. Collectively, our findings reveal that formation of IMPDH cytoophidia reflects upregulation of purine nucleotide synthesis, suggesting that the IMPDH cytoophidium plays a role distinct from that of the CTPS cytoophidium in controlling intracellular nucleotide homeostasis.


Assuntos
IMP Desidrogenase/genética , Regulação para Cima , Animais , Carbono-Nitrogênio Ligases/metabolismo , Linhagem Celular Tumoral , Citoplasma/metabolismo , Imunofluorescência , Humanos , IMP Desidrogenase/metabolismo , Camundongos , Nucleotídeos/metabolismo
4.
Development ; 141(3): 563-73, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24401369

RESUMO

The nutritional environment is crucial for Drosophila oogenesis in terms of controlling hormonal conditions that regulate yolk production and the progress of vitellogenesis. Here, we discovered that Drosophila Endophilin B (D-EndoB), a member of the endophilin family, is required for yolk endocytosis as it regulates membrane dynamics in developing egg chambers. Loss of D-EndoB leads to yolk content reduction, similar to that seen in yolkless mutants, and also causes poor fecundity. In addition, mutant egg chambers exhibit an arrest at the previtellogenic stage. D-EndoB displayed a crescent localization at the oocyte posterior pole in an Oskar-dependent manner; however, it did not contribute to pole plasm assembly. D-EndoB was found to partially colocalize with Long Oskar and Yolkless at the endocytic membranes in ultrastructure analysis. Using an FM4-64 dye incorporation assay, D-EndoB was also found to promote endocytosis in the oocyte. When expressing the full-length D-endoB(FL) or D-endoB(ΔSH3) mutant transgenes in oocytes, the blockage of vitellogenesis and the defect in fecundity in D-endoB mutants was restored. By contrast, a truncated N-BAR domain of the D-EndoB only partially rescued these defects. Taken together, these results allow us to conclude that D-EndoB contributes to the endocytic activity downstream of Oskar by facilitating membrane dynamics through its N-BAR domain in the yolk uptake process, thereby leading to normal progression of vitellogenesis.


Assuntos
Aciltransferases/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Gema de Ovo/citologia , Endocitose , Oócitos/citologia , Aciltransferases/química , Aciltransferases/genética , Animais , Membrana Celular/metabolismo , Polaridade Celular/genética , RNA Helicases DEAD-box/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/ultraestrutura , Gema de Ovo/metabolismo , Feminino , Fertilidade/genética , Perfilação da Expressão Gênica , Mutação/genética , Oócitos/metabolismo , Oócitos/ultraestrutura , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Transdução de Sinais/genética
5.
J Biomed Sci ; 21: 64, 2014 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-25037729

RESUMO

BACKGROUND: Methionine, an essential amino acid, is required for protein synthesis and normal cell metabolism. The transmethylation pathway and methionine salvage pathway (MTA cycle) are two major pathways regulating methionine metabolism. Recently, methionine has been reported to play a key role in Drosophila fecundity. RESULTS: Here, we revealed that the MTA cycle plays a crucial role in Drosophila fecundity using the mutant of aci-reductone dioxygenase 1 (DADI1), an enzyme in the MTA cycle. In dietary restriction condition, the egg production of adi1 mutant flies was reduced compared to that of control flies. This fecundity defect in mutant flies was rescued by reintroduction of Dadi1 gene. Moreover, a functional homolog of human ADI1 also recovered the reproduction defect, in which the enzymatic activity of human ADI1 is required for normal fecundity. Importantly, methionine supply rescued the fecundity defect in Dadi1 mutant flies. The detailed analysis of Dadi1 mutant ovaries revealed a dramatic change in the levels of methionine metabolism. In addition, we found that three compounds namely, methionine, SAM and Methionine sulfoxide, respectively, may be required for normal fecundity. CONCLUSIONS: In summary, these results suggest that ADI1, an MTA cycle enzyme, affects fly fecundity through the regulation of methionine metabolism.


Assuntos
Dioxigenases/metabolismo , Proteínas de Drosophila/metabolismo , Metionina/metabolismo , Animais , Dioxigenases/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Fertilidade/fisiologia , Humanos , Masculino , Metionina/genética , Mutação
6.
Chin J Physiol ; 57(6): 350-7, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25575524

RESUMO

The E3 ubiquitin-protein ligase Casitas B-lineage lymphoma protein (Cbl) negatively regulates epidermal growth factor receptor (EGFR) signaling pathway in many organisms, and has crucial roles in cell growth, development and human pathologies, including lung cancers. RING-SH2Grb² a chimeric protein of 215 amino acids containing the RING domain of Cbl that provides E3 ligase activity, and the SH2 domain of Grb2 that serves as an adaptor for EGFR. In this study, we demonstrated that RING-SH2Grb² could promote the ubiquitinylation and degradation of EGFR in a human non-small cell lung carcinoma cell line H1299. Moreover, we discovered that the RING-SH2Grb² chimera promoted the internalization of ligand-bound EGFR, inhibited the growth of H1299 cells, and significantly suppressed tumor growth in a xenograft mouse model. In summary, our results revealed a potential new cancer therapeutic approach for non-small cell lung cancer.


Assuntos
Receptores ErbB/fisiologia , Proteína Adaptadora GRB2/farmacologia , Proteínas Proto-Oncogênicas c-cbl/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Transdução de Sinais/fisiologia , Animais , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/tratamento farmacológico , Domínios de Homologia de src
7.
Int J Nanomedicine ; 17: 969-981, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280334

RESUMO

Background: Intravascular delivery of nanoparticles for theranostic application permits direct interaction of nanoparticles and vascular cells. Since vascular smooth muscle cells (VSMCs), the major components of the vascular wall, are constantly subjected to mechanical stimulation from hemodynamic influence, we asked whether cyclic strain may modulate internalization of magnetic nanoparticles (MNPs) by cultured VSMCs. Methods: Cyclic strain (1 Hz and 10%) was applied with Flexcell system in cultured VSMCs from rats, with cell-associated MNPs (MNPcell) determined by a colorimetric iron assay. Transmission and scanning electron microscopy were used for morphology studies. Confocal microscopy was used to demonstrate distribution of actin assembly in VSMCs. Results: Incubation of poly(acrylic acid) (PAA)-coated MNPs with VSMCs for 4 h induced microvilli formation and MNP internalization. Application of cyclic strain for 4-12 h significantly reduced MNPcell by up to 65% (p < 0.05), which was associated with blunted microvilli and reduced vesicle size/cell, but not vesicle numbers/cell. Confocal microscopy demonstrated that both cyclic strain and fibronectin coating of the culture plate reduced internalized MNPs, which were co-localized with vinculin. Furthermore, cytochalasin D reduced MNPcell, suggesting a role of actin polymerization in MNP uptake by VSMCs; however, a myosin II ATPase inhibitor, blebbistatin, exhibited no effect. Cyclic strain also attenuated uptake of PAA-MNPs by LN-229 cells and uptake of poly-L-lysine-coated MNPs by VSMCs. Conclusion: In such a dynamic milieu, cyclic strain may impede cellular internalization of nanocarriers, which spares the nanocarriers and augments their delivery to the target site in the lumen of vessels or outside of the circulatory system.


Assuntos
Miócitos de Músculo Liso/metabolismo , Nanopartículas , Ratos , Animais , Transporte Biológico , Linhagem Celular , Magnetismo , Músculo Liso Vascular , Nanopartículas/metabolismo , Estresse Mecânico
8.
J Biomed Sci ; 18: 42, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21682860

RESUMO

BACKGROUND: The conserved Notch signaling pathway regulates cell fate decisions and maintains stem cells in multicellular organisms. Up-regulation of Notch signaling is observed in several types of cancer and is causally involved in proliferation and survival of cancer cells. Thus, it is of great interest to look for anti-Notch reagents for therapeutic purposes. In model animal Drosophila, Notch signaling restricts selection of sensory organ precursors (SOPs) during external sensory (ES) organ development. To look for novel genes that can suppress Notch signaling, we performed a gain-of-function modifier screen to look for genes that enhance the phenotype of ectopic ES organs induced by overexpression of phyllopod, a gene required for SOP specification. RESULTS: From the gain-of-function screen, we discovered that overexpression of polished rice/tarsal-less (pri/tal) increases the numbers of ES organs as well as SOPs. pri/tal is a polycistronic gene that contains four short open reading frames encoding three 11-amino acid and one 32-amino acid peptides. Ectopic expression of the 11 amino-acid peptides recapitulates the pri/tal misexpression phenotype in ectopic ES organ formation. In situ hybridization experiment reveals that pri/tal mRNA is expressed in the SOPs of the chemosensory organs and the stretch-sensing chordotonal organs.In Drosophila wing development, the Notch signaling pathway mediates the formation of the dorsal-ventral (DV) compartmental boundary and the restriction of the vein width from the primordial veins, the proveins. We also found that pri/tal mRNA is expressed in the DV boundary and the longitudinal proveins, and overexpression of Pri/Tal peptides disrupts the DV boundary formation and helps to expand the width of the wing vein. Genetic analyses further show that a Notch loss-of-function allele strongly enhances these two phenotypes. Cut and E(spl)mß are target genes of the Notch pathway in DV boundary formation and vein specification, respectively. We also found that overexpression of Pri/Tal peptides abolishes Cut expression and co-expression of Pri/Tal peptides with phyl strongly reduces E(spl)mß expression. CONCLUSIONS: We show for the first time that the overexpression of Pri/Tal 11-amino acid peptides disrupts multiple Notch-mediated processes and reduces Notch target gene expression in Drosophila, suggesting that these peptides have novel antagonistic activity to the Notch pathway. Thus, our discovery might provide insights into designing new therapeutic reagents for Notch-related diseases.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Expressão Gênica/efeitos dos fármacos , Peptídeos/metabolismo , Receptores Notch/genética , Transdução de Sinais , Sequência de Aminoácidos , Animais , Diferenciação Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Descoberta de Drogas , Feminino , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Receptores Notch/metabolismo , Órgãos dos Sentidos/crescimento & desenvolvimento , Transaldolase/genética , Transaldolase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Asas de Animais/crescimento & desenvolvimento
9.
Anal Bioanal Chem ; 400(2): 335-41, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21347676

RESUMO

We carried out a Lie group study of the micro-Raman tissue spectra of the Gurken gradients of Drosophila oogenesis. Matrix representations (2 × 2) resulting from the polarized Raman scattering were employed to assess the roles of the ligand-receptor complexes in follicle cell. It was found that the Gurken expansion caused by overexpressing Dally-like protein (Dlp) revealed an X(1) Lie point symmetry, while the Gurken distribution in the wild-type egg showed an X(23) Lie point symmetry. The correlation between the corresponding continuous symmetry operations and the observed Gurken localization were a corroboration of the significance of the Lie group analysis by means of the reaction-diffusion equation in a prolate spheroidal coordinate system. These investigations suggested that the group-theoretical approach can be applied to characterize the fluctuating asymmetry and the developmental stability in a wide variety of organisms.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Oócitos/química , Oócitos/metabolismo , Oogênese , Fator de Crescimento Transformador alfa/metabolismo , Animais , Drosophila/química , Drosophila/citologia , Proteínas de Drosophila/química , Feminino , Oócitos/citologia , Análise Espectral Raman , Fator de Crescimento Transformador alfa/química
10.
Cancer Immunol Res ; 9(1): 113-122, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33177111

RESUMO

Altered glycosylations, which are associated with expression and activities of glycosyltransferases, can dramatically affect the function of glycoproteins and modify the behavior of tumor cells. ST3GAL1 is a sialyltransferase that adds sialic acid to core 1 glycans, thereby terminating glycan chain extension. In breast carcinomas, overexpression of ST3GAL1 promotes tumorigenesis and correlates with increased tumor grade. In pursuing the role of ST3GAL1 in breast cancer using ST3GAL1-siRNA to knockdown ST3GAL1, we identified CD55 to be one of the potential target proteins of ST3GAL1. CD55 is an important complement regulatory protein, preventing cells from complement-mediated cytotoxicity. CD55 had one N-linked glycosylation site in addition to a Ser/Thr-rich domain, which was expected to be heavily O-glycosylated. Detailed analyses of N- and O-linked oligosaccharides of CD55 released from scramble or ST3GAL1 siRNA-treated breast cancer cells by tandem mass spectrometry revealed that the N-glycan profile was not affected by ST3GAL1 silencing. The O-glycan profile of CD55 demonstrated a shift in abundance to nonsialylated core 1 and monosialylated core 2 at the expense of the disialylated core 2 structure after ST3GAL1 silencing. We also demonstrated that O-linked desialylation of CD55 by ST3GAL1 silencing resulted in increased C3 deposition and complement-mediated lysis of breast cancer cells and enhanced sensitivity to antibody-dependent cell-mediated cytotoxicity. These data demonstrated that ST3GAL1-mediated O-linked sialylation of CD55 acts like an immune checkpoint molecule for cancer cells to evade immune attack and that inhibition of ST3GAL1 is a potential strategy to block CD55-mediated immune evasion.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/imunologia , Neoplasias da Mama/patologia , Antígenos CD55/imunologia , Evasão da Resposta Imune/imunologia , Sialiltransferases/metabolismo , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glicosilação , Humanos , RNA Interferente Pequeno/metabolismo , Sialiltransferases/genética , Sialiltransferases/imunologia , beta-Galactosídeo alfa-2,3-Sialiltransferase
11.
J Med Virol ; 81(9): 1560-8, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19626614

RESUMO

Human aci-reductone dioxygenase 1 (ADI1) is a member of the Cupin superfamily. It binds to and inhibits the activities of membrane-type 1 matrix metalloproteinase, a protein known to interact with the tight junction protein, claudin-1. Previously, a variant protein, named submergence-induced protein-like factor (Sip-L), consisting of ADI1 amino acids 64-179, was found to support hepatitis C virus (HCV) infection and replication in 293 cells. In the present study, it was discovered that over-expression of human ADI1 in 293 cells (293-ADI1 cells) also supported HCV infection and replication. Using serum-derived HCV as an infectious source, enhanced cell uptake of HCV to a Northern blot detectable level was found in 293 cells over-expressing both CD81 and ADI1 (293-ADI1-CD81 cells). The enhanced cell entry was confirmed by the use of the vesicular stomatitis virus-based HCV pseudotype particles. However, transfection of HCV replicon RNA by electroporation into naïve 293 and 293-ADI1 cells revealed no difference in replication efficiency. Using the infectious J6/JFH chimera as an infectious source, the infectivity was compared between 293-ADI1-CD81 and Huh-7.5 cells. More infection foci were formed in the 293-ADI1-CD81 cells in the first round of infection. In conclusion, human ADI1 over-expression in 293 cells enhances cell entry but not replication of HCV. 293-ADI1-CD81 cells are permissive for serum-derived HCV infection.


Assuntos
Antígenos CD/biossíntese , Proteínas de Transporte/biossíntese , Dioxigenases/biossíntese , Hepacivirus/crescimento & desenvolvimento , Internalização do Vírus , Replicação Viral , Linhagem Celular , Dosagem de Genes , Humanos , Tetraspanina 28
12.
J Biomed Sci ; 16: 22, 2009 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-19272190

RESUMO

Interferons (IFNs) are key regulators for both innate and adaptive immune responses. By screening ENU-mutagenized mice, we identified a pedigree- P117 which displayed impaired response to type I, but not type II, IFNs. Through inheritance test, genetic mapping and sequencing, we found a T to A point mutation in the 5' splice site of STAT2 intron 4-5, leading to cryptic splicing and frame shifting. As a result, the expression of STAT2 protein was greatly diminished in the mutant mice. Nonetheless, a trace amount of functional STAT2 protein was still detectable and was capable of inducing, though to a lesser extent, IFNalpha-downstream gene expressions, suggesting that P117 is a STAT2 hypomorphic mutant. The restoration of mouse or human STAT2 gene in P117 MEFs rescued the response to IFNalpha, suggesting that the mutation in STAT2 is most likely the cause of the phenotypes seen in the pedigree. Development of different subsets of lymphocytes appeared to be normal in the mutant mice except that the percentage and basal expression of CD86 in splenic pDC and cDC were reduced. In addition, in vitro Flt3L-dependent DC development and TLR ligand-mediated DC differentiation were also defective in mutant cells. These results suggest that STAT2 positively regulates DC development and differentiation. Interestingly, a severe impairment of antiviral state and increased susceptibility to EMCV infection were observed in the mutant MEFs and mice, respectively, suggesting that the remaining STAT2 is not sufficient to confer antiviral response. In sum, the new allele of STAT2 mutant reported here reveals a role of STAT2 for DC development and a threshold requirement for full functions of type I IFNs.


Assuntos
Células Dendríticas/fisiologia , Fenômenos do Sistema Imunitário/fisiologia , Interferon-alfa/imunologia , Interferon gama/imunologia , Mutação , Fator de Transcrição STAT2 , Vírus/metabolismo , Animais , Células Cultivadas , Análise Mutacional de DNA , Células Dendríticas/citologia , Feminino , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Íntrons , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linhagem , Splicing de RNA , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Vírus/patogenicidade
13.
Front Immunol ; 10: 1448, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293595

RESUMO

Type I interferon (IFN-I) is induced during innate immune response and is required for initiating antiviral activity, growth inhibition, and immunomodulation. STAT1, STAT2, and STAT3 are activated in response to IFN-I stimulation. STAT1, STAT2, and IRF9 form ISGF3 complex which transactivates downstream IFN-stimulated genes and mediates antiviral response. However, the role of STAT3 remains to be characterized. Here, we review the multiple actions of STAT3 on suppressing IFN-I responses, including blocking IFN-I signaling, downregulating the expression of ISGF3 components, and antagonizing the transcriptional activity of ISGF3. Finally, we discuss the evolution of the suppressive activity of STAT3 and the therapeutic potential of STAT3 inhibitors in host defense against viral infections and IFN-I-associated diseases.


Assuntos
Interferon Tipo I/metabolismo , Fator de Transcrição STAT3/metabolismo , Viroses/imunologia , Regulação da Expressão Gênica/imunologia , Humanos , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fator de Transcrição STAT3/genética , Transdução de Sinais/imunologia , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
14.
Cell Death Dis ; 10(3): 240, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858354

RESUMO

The 5'-methylthioadenosine (MTA) cycle-participating human acireductone dioxygenase 1 (ADI1) has been implicated as a tumor suppressor in prostate cancer, yet its role remains unclear in hepatocellular carcinoma (HCC). Here, we demonstrated a significant reduction of ADI1, either in protein or mRNA level, in HCC tissues. Additionally, higher ADI1 levels were associated with favorable postoperative recurrence-free survival in HCC patients. By altering ADI1 expression in HCC cells, a negative correlation between ADI1 and cell proliferation was observed. Cell-based and xenograft experiments were performed by using cells overexpressing ADI1 mutants carrying mutations at the metal-binding sites (E94A and H133A, respectively), which selectively disrupted differential catalytic steps, resulting in staying or leaving the MTA cycle. The results showed that the growth suppression effect was mediated by accelerating the MTA cycle. A cDNA microarray analysis followed by verification experiments identified that caveolin-1 (CAV1), a growth-promoting protein in HCC, was markedly decreased upon ADI1 overexpression. Suppression of CAV1 expression was mediated by an increase of S-adenosylmethionine (SAMe) level. The methylation status of CAV1 promoter was significantly altered upon ADI1 overexpression. Finally, a genome-wide methylation analysis revealed that ADI1 overexpression altered promoter methylation profiles in a set of cancer-related genes, including CAV1 and genes encoding antisense non-coding RNAs, long non-coding RNAs, and microRNAs, resulting in significant changes of their expression levels. In conclusion, ADI1 expression promoted MTA cycle to increase SAMe levels, which altered genome-wide promoter methylation profiles, resulting in altered gene expression and HCC growth suppression.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Desoxiadenosinas/metabolismo , Dioxigenases/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , S-Adenosilmetionina/metabolismo , Tionucleosídeos/metabolismo , Animais , Apoptose/genética , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Caveolina 1/antagonistas & inibidores , Caveolina 1/genética , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Estudos de Coortes , Metilação de DNA , Dioxigenases/genética , Regulação para Baixo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Prognóstico , Regiões Promotoras Genéticas , Transplante Heterólogo
15.
Cell Div ; 13: 5, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29946345

RESUMO

BACKGROUND: Inosine monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme in de novo GTP biosynthesis, plays an important role in cell metabolism and proliferation. It has been demonstrated that IMPDH can aggregate into a macrostructure, termed the cytoophidium, in mammalian cells under a variety of conditions. However, the regulation and function of the cytoophidium are still elusive. RESULTS: In this study, we report that spontaneous filamentation of IMPDH is correlated with rapid cell proliferation. Intracellular IMP accumulation promoted cytoophidium assembly, whereas elevated GTP level triggered disassociation of aggregates. By using IMPDH2 CBS domain mutant cell models, which are unable to form the cytoophidium, we have determined that the cytoophidium is of the utmost importance for maintaining the GTP pool and normal cell proliferation in the condition that higher IMPDH activity is required. CONCLUSIONS: Together, our results suggest a novel mechanism whereby cytoophidium assembly upregulates IMPDH activity and mediates guanine nucleotide homeostasis.

16.
Cell Rep ; 24(10): 2733-2745.e7, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30184506

RESUMO

CTP synthase (CTPS) forms compartmentalized filaments in response to substrate availability and environmental nutrient status. However, the physiological role of filaments and mechanisms for filament assembly are not well understood. Here, we provide evidence that CTPS forms filaments in response to histidine influx during glutamine starvation. Tetramer conformation-based filament formation restricts CTPS enzymatic activity during nutrient deprivation. CTPS protein levels remain stable in the presence of histidine during nutrient deprivation, followed by rapid cell growth after stress relief. We demonstrate that filament formation is controlled by methylation and that histidine promotes re-methylation of homocysteine by donating one-carbon intermediates to the cytosolic folate cycle. Furthermore, we find that starvation stress and glutamine deficiency activate the GCN2/ATF4/MTHFD2 axis, which coordinates CTPS filament formation. CTPS filament formation induced by histidine-mediated methylation may be a strategy used by cancer cells to maintain homeostasis and ensure a growth advantage in adverse environments.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Histidina/metabolismo , Animais , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/genética , Ácido Fólico/metabolismo , Homocisteína/metabolismo , Humanos , Metilação , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo
17.
Mech Dev ; 123(6): 450-62, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16844358

RESUMO

The Cbl family of proteins downregulate epidermal growth factor receptor (Egfr) signaling via receptor internalization and destruction. These proteins contain two functional domains, a RING finger domain with E3 ligase activity, and a proline rich domain mediating the formation of protein complexes. The Drosophila cbl gene encodes two isoforms, D-CblS and D-CblL. While both contain a RING finger domain, the proline rich domain is absent from D-CblS. We demonstrate that expression of either isoform is sufficient to rescue both the lethality of a D-cbl null mutant and the adult phenotypes characteristic of Egfr hyperactivation, suggesting that both isoforms downregulate Egfr signaling. Interestingly, targeted overexpression of D-CblL, but not D-CblS, results in phenotypes characteristic of reduced Egfr signaling and suppresses the effect of constitutive Egfr activation. The level of D-CblL was significantly correlated with the phenotypic severity of reduced Egfr signaling, suggesting that D-CblL controls the efficiency of downregulation of Egfr signaling. Furthermore, reduced dynamin function suppresses the effects of D-CblL overexpression in follicle cells, suggesting that D-CblL promotes internalization of activated receptors. D-CblL is detected in a punctate cytoplasmic pattern, whereas D-CblS is mainly localized at the follicle cell cortex. Therefore, D-CblS and D-CblL may downregulate Egfr through distinct mechanisms.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/fisiologia , Receptores ErbB/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Proto-Oncogênicas c-cbl/química , Proteínas Proto-Oncogênicas c-cbl/fisiologia , Processamento Alternativo , Animais , Padronização Corporal , Drosophila melanogaster , Endocitose , Receptores ErbB/metabolismo , Feminino , Hibridização In Situ , Ovário/metabolismo , Fenótipo , Isoformas de Proteínas , Estrutura Terciária de Proteína , Transdução de Sinais
18.
Mol Biol Cell ; 28(8): 1054-1065, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28228547

RESUMO

Nonmuscle myosin II (NM-II) is an important motor protein involved in cell migration. Incorporation of NM-II into actin stress fiber provides a traction force to promote actin retrograde flow and focal adhesion assembly. However, the components involved in regulation of NM-II activity are not well understood. Here we identified a novel actin stress fiber-associated protein, LIM and calponin-homology domains 1 (LIMCH1), which regulates NM-II activity. The recruitment of LIMCH1 into contractile stress fibers revealed its localization complementary to actinin-1. LIMCH1 interacted with NM-IIA, but not NM-IIB, independent of the inhibition of myosin ATPase activity with blebbistatin. Moreover, the N-terminus of LIMCH1 binds to the head region of NM-IIA. Depletion of LIMCH1 attenuated myosin regulatory light chain (MRLC) diphosphorylation in HeLa cells, which was restored by reexpression of small interfering RNA-resistant LIMCH1. In addition, LIMCH1-depleted HeLa cells exhibited a decrease in the number of actin stress fibers and focal adhesions, leading to enhanced cell migration. Collectively, our data suggest that LIMCH1 plays a positive role in regulation of NM-II activity through effects on MRLC during cell migration.


Assuntos
Movimento Celular/fisiologia , Proteínas com Domínio LIM/metabolismo , Citoesqueleto de Actina/metabolismo , Actinina/metabolismo , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Citoesqueleto/metabolismo , Adesões Focais/metabolismo , Células HeLa , Humanos , Cadeias Leves de Miosina/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Fosforilação , Fibras de Estresse/metabolismo , Fibras de Estresse/fisiologia
19.
Fly (Austin) ; 10(3): 108-14, 2016 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-27116391

RESUMO

Living organisms respond to nutrient availability by regulating the activity of metabolic enzymes. Therefore, the reversible post-translational modification of an enzyme is a common regulatory mechanism for energy conservation. Recently, cytidine-5'-triphosphate (CTP) synthase was discovered to form a filamentous structure that is evolutionarily conserved from flies to humans. Interestingly, induction of the formation of CTP synthase filament is responsive to starvation or glutamine depletion. However, the biological roles of this structure remain elusive. We have recently shown that ubiquitination regulates CTP synthase activity by promoting filament formation in Drosophila ovaries during endocycles. Intriguingly, although the ubiquitination process was required for filament formation induced by glutamine depletion, CTP synthase ubiquitination was found to be inversely correlated with filament formation in Drosophila and human cell lines. In this article, we discuss the putative dual roles of ubiquitination, as well as its physiological implications, in the regulation of CTP synthase structure.


Assuntos
Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/metabolismo , Drosophila/enzimologia , Processamento de Proteína Pós-Traducional , Animais , Citoesqueleto/metabolismo , Feminino , Glutamina/metabolismo , Ovário/enzimologia , Ubiquitinação
20.
J Vis Exp ; (105)2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26650046

RESUMO

Plasmacytoid dendritic cells (pDCs) are powerful type I interferon (IFN-I) producing cells that are activated in response to infection or during inflammatory responses. Unfortunately, study of pDC function is hindered by their low frequency in lymphoid organs, and existing methods for in vitro DC generation predominantly favor the production of cDCs over pDCs. Here we present a unique approach to efficiently generate pDCs from common lymphoid progenitors (CLPs) in vitro. Specifically, the protocol described details how to purify CLPs from bone marrow and generate pDCs by coculturing with γ-irradiated AC-6 feeder cells in the presence of Flt3 ligand. A unique characteristic of this culture system is that the CLPs migrate underneath the AC-6 cells and become cobblestone area-forming cells, a critical step for expanding pDCs. Morphologically distinct DCs, namely pDCs and cDCs, were generated after approximately 2 weeks with a composition of 70-90% pDCs under optimal conditions. Typically, the number of pDCs generated by this method is roughly 100-fold of the number of CLPs seeded. Therefore, this is a novel system with which to robustly generate the large numbers of pDCs required to facilitate further studies into the development and function of these cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA