Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 34(19): 3382-3384, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29722807

RESUMO

Motivation: RNA interference, a highly conserved regulatory mechanism, is mediated via small RNAs (sRNA). Recent technical advances enabled the analysis of larger, complex datasets and the investigation of microRNAs and the less known small interfering RNAs. However, the size and intricacy of current data requires a comprehensive set of tools, able to discriminate the patterns from the low-level, noise-like, variation; numerous and varied suggestions from the community represent an invaluable source of ideas for future tools, the ability of the community to contribute to this software is essential. Results: We present a new version of the UEA sRNA Workbench, reconfigured to allow an easy insertion of new tools/workflows. In its released form, it comprises of a suite of tools in a user-friendly environment, with enhanced capabilities for a comprehensive processing of sRNA-seq data e.g. tools for an accurate prediction of sRNA loci (CoLIde) and miRNA loci (miRCat2), as well as workflows to guide the users through common steps such as quality checking of the input data, normalization of abundances or detection of differential expression represent the first step in sRNA-seq analyses. Availability and implementation: The UEA sRNA Workbench is available at: http://srna-workbench.cmp.uea.ac.uk. The source code is available at: https://github.com/sRNAworkbenchuea/UEA_sRNA_Workbench. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
MicroRNAs/genética , RNA Interferente Pequeno/genética , Análise de Sequência de RNA/métodos , Software , Interferência de RNA , Fluxo de Trabalho
2.
Bioinformatics ; 33(16): 2446-2454, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28407097

RESUMO

MOTIVATION: MicroRNAs are a class of ∼21-22 nt small RNAs which are excised from a stable hairpin-like secondary structure. They have important gene regulatory functions and are involved in many pathways including developmental timing, organogenesis and development in eukaryotes. There are several computational tools for miRNA detection from next-generation sequencing datasets. However, many of these tools suffer from high false positive and false negative rates. Here we present a novel miRNA prediction algorithm, miRCat2. miRCat2 incorporates a new entropy-based approach to detect miRNA loci, which is designed to cope with the high sequencing depth of current next-generation sequencing datasets. It has a user-friendly interface and produces graphical representations of the hairpin structure and plots depicting the alignment of sequences on the secondary structure. RESULTS: We test miRCat2 on a number of animal and plant datasets and present a comparative analysis with miRCat, miRDeep2, miRPlant and miReap. We also use mutants in the miRNA biogenesis pathway to evaluate the predictions of these tools. Results indicate that miRCat2 has an improved accuracy compared with other methods tested. Moreover, miRCat2 predicts several new miRNAs that are differentially expressed in wild-type versus mutants in the miRNA biogenesis pathway. AVAILABILITY AND IMPLEMENTATION: miRCat2 is part of the UEA small RNA Workbench and is freely available from http://srna-workbench.cmp.uea.ac.uk/. CONTACT: v.moulton@uea.ac.uk or s.moxon@uea.ac.uk. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Loci Gênicos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , MicroRNAs/genética , Software , Algoritmos , Animais , Entropia , Plantas/genética , Plantas/metabolismo , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA