Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Chem Biol ; 31(3): 577-592.e23, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38042151

RESUMO

Hyperpolarization-activated and cyclic-nucleotide-gated 1 (HCN1) ion channels are proposed to be critical for cognitive function through regulation of synaptic integration. However, resolving the precise role of HCN1 in neurophysiology and exploiting its therapeutic potential has been hampered by minimally selective antagonists with poor potency and limited in vivo efficiency. Using automated electrophysiology in a small-molecule library screen and chemical optimization, we identified a primary carboxamide series of potent and selective HCN1 inhibitors with a distinct mode of action. In cognition-relevant brain circuits, selective inhibition of native HCN1 produced on-target effects, including enhanced excitatory postsynaptic potential summation, while administration of a selective HCN1 inhibitor to rats recovered decrement working memory. Unlike prior non-selective HCN antagonists, selective HCN1 inhibition did not alter cardiac physiology in human atrial cardiomyocytes or in rats. Collectively, selective HCN1 inhibitors described herein unmask HCN1 as a potential target for the treatment of cognitive dysfunction in brain disorders.


Assuntos
Memória de Curto Prazo , Canais de Potássio , Ratos , Animais , Humanos , Canais de Potássio/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Encéfalo/metabolismo
3.
Elife ; 112022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35315774

RESUMO

Tongmai Yangxin (TMYX) is a complex compound of the Traditional Chinese Medicine (TCM) used to treat several cardiac rhythm disorders; however, no information regarding its mechanism of action is available. In this study we provide a detailed characterization of the effects of TMYX on the electrical activity of pacemaker cells and unravel its mechanism of action. Single-cell electrophysiology revealed that TMYX elicits a reversible and dose-dependent (2/6 mg/ml) slowing of spontaneous action potentials rate (-20.8/-50.2%) by a selective reduction of the diastolic phase (-50.1/-76.0%). This action is mediated by a negative shift of the If activation curve (-6.7/-11.9 mV) and is caused by a reduction of the cyclic adenosine monophosphate (cAMP)-induced stimulation of pacemaker channels. We provide evidence that TMYX acts by directly antagonizing the cAMP-induced allosteric modulation of the pacemaker channels. Noticeably, this mechanism functionally resembles the pharmacological actions of muscarinic stimulation or ß-blockers, but it does not require generalized changes in cytoplasmic cAMP levels thus ensuring a selective action on rate. In agreement with a competitive inhibition mechanism, TMYX exerts its maximal antagonistic action at submaximal cAMP concentrations and then progressively becomes less effective thus ensuring a full contribution of If to pacemaker rate during high metabolic demand and sympathetic stimulation.


Assuntos
AMP Cíclico , Sistemas do Segundo Mensageiro , Potenciais de Ação , Animais , China , AMP Cíclico/metabolismo , Miócitos Cardíacos/metabolismo , Coelhos
4.
Nat Commun ; 8(1): 1258, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097735

RESUMO

AMPK is a conserved serine/threonine kinase whose activity maintains cellular energy homeostasis. Eukaryotic AMPK exists as αßγ complexes, whose regulatory γ subunit confers energy sensor function by binding adenine nucleotides. Humans bearing activating mutations in the γ2 subunit exhibit a phenotype including unexplained slowing of heart rate (bradycardia). Here, we show that γ2 AMPK activation downregulates fundamental sinoatrial cell pacemaker mechanisms to lower heart rate, including sarcolemmal hyperpolarization-activated current (I f) and ryanodine receptor-derived diastolic local subsarcolemmal Ca2+ release. In contrast, loss of γ2 AMPK induces a reciprocal phenotype of increased heart rate, and prevents the adaptive intrinsic bradycardia of endurance training. Our results reveal that in mammals, for which heart rate is a key determinant of cardiac energy demand, AMPK functions in an organ-specific manner to maintain cardiac energy homeostasis and determines cardiac physiological adaptation to exercise by modulating intrinsic sinoatrial cell behavior.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Bradicardia/genética , Cálcio/metabolismo , Frequência Cardíaca/genética , Sarcolema/metabolismo , Nó Sinoatrial/metabolismo , Adulto , Animais , Bradicardia/metabolismo , Eletrocardiografia Ambulatorial , Exercício Físico , Coração/diagnóstico por imagem , Humanos , Imagem Cinética por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Camundongos , Microscopia Eletrônica de Transmissão , Mutação , Miocárdio/metabolismo , Miocárdio/patologia , Miocárdio/ultraestrutura , Condicionamento Físico Animal , Resistência Física , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Nó Sinoatrial/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA