Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pharm Pharm Sci ; 24: 344-362, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34224665

RESUMO

PURPOSE: The ultimate goal of this study is to develop a novel delivery system for a new potent cytotoxic compound, CCI-001, with anti-b tubulin activity, so that the drug can be effectively administered and at the same time its harmful side effects can be reduced. METHODS: In the current study, CCI-001 was loaded into serum albumin (SA), using a modified desolvation method, generating CCI-001-SA nanoparticles. Both bovine and human SA were used for the encapsulation of this drug candidate. Optimum conditions for drug loading were achieved when already formed and crosslinked albumin nanoparticles were incubated overnight at 37°C with CCI-001 solutions. The CCI-001-loaded albumin nanoparticles were assessed for average particle diameter and polydispersity, zeta potential, drug loading, in vitro release, morphology and cell toxicity against SW620 and HCT116 colorectal cancer cells. RESULTS: The spherical nanoparticles obtained were negatively charged (~ -30 mV) and had an average diameter of ~ 130 nm, with a narrow size distribution. The in vitro release of CCI-001 from the albumin nanoparticles showed a sustained release pattern over 24 hours without any initial burst release, compared to the fast release of the free drug under experimental conditions. No difference between the SA from the two species in terms of CCI-001 loading was observed. However, a significant difference was observed between the release profiles of CCI-001 from drug-loaded HSA and drug-loaded BSA nanoparticles with HSA nanoparticles showing slower drug release (mean release time, MRT, values of 5.14 ± 0.33 h and 6.88 ± 0.15 h for BSA-NPs and HSA-NPs, respectively, P < 0.01). Cellular toxicity studies showed higher cytotoxicity for CCI-001-SA compared to the free drug (IC50s of 0.62 ± 0.31 nM vs 2.06 ± 0.29 nM in SW620 cells and 0.9 ± 0.1 nM vs 4.2 ± 0.2 nM in HCT116 cells, for CCI-001-HSA NPs and free drug, respectively). Therefore, despite the low drug content level in the HSA nanoparticles of CCI-001, the formulation provides relevant concentrations for further in vivo studies in animal models due to high drug potency. CONCLUSIONS: The data support the potential use of albumin as a nanocarrier for CCI-001 in biological systems.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Nanopartículas , Moduladores de Tubulina/farmacologia , Animais , Bovinos , Linhagem Celular Tumoral , Química Farmacêutica , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Células HCT116 , Humanos , Tamanho da Partícula , Soroalbumina Bovina/química , Albumina Sérica Humana/química , Moduladores de Tubulina/administração & dosagem , Moduladores de Tubulina/química
2.
Front Oncol ; 11: 772920, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004293

RESUMO

Inhibition of the DNA repair enzyme polynucleotide kinase/phosphatase (PNKP) increases the sensitivity of cancer cells to DNA damage by ionizing radiation (IR). We have developed a novel inhibitor of PNKP, i.e., A83B4C63, as a potential radio-sensitizer for the treatment of solid tumors. Systemic delivery of A83B4C63, however, may sensitize both cancer and normal cells to DNA damaging therapeutics. Preferential delivery of A83B4C63 to solid tumors by nanoparticles (NP) was proposed to reduce potential side effects of this PNKP inhibitor to normal tissue, particularly when combined with DNA damaging therapies. Here, we investigated the radio-sensitizing activity of A83B4C63 encapsulated in NPs (NP/A83) based on methoxy poly(ethylene oxide)-b-poly(α-benzyl carboxylate-ε-caprolactone) (mPEO-b-PBCL) or solubilized with the aid of Cremophor EL: Ethanol (CE/A83) in human HCT116 colorectal cancer (CRC) models. Levels of γ-H2AX were measured and the biodistribution of CE/A83 and NP/A83 administered intravenously was determined in subcutaneous HCT116 CRC xenografts. The radio-sensitization effect of A83B4C63 was measured following fractionated tumor irradiation using an image-guided Small Animal Radiation Research Platform (SARRP), with 24 h pre-administration of CE/A83 and NP/A83 to Luc+/HCT116 bearing mice. Therapeutic effects were analyzed by monitoring tumor growth and functional imaging using Positron Emission Tomography (PET) and [18F]-fluoro-3'-deoxy-3'-L:-fluorothymidine ([18F]FLT) as a radiotracer for cell proliferation. The results showed an increased persistence of DNA damage in cells treated with a combination of CE/A83 or NP/A83 and IR compared to those only exposed to IR. Significantly higher tumor growth delay in mice treated with a combination of IR and NP/A83 than those treated with IR plus CE/A83 was observed. [18F]FLT PET displayed significant functional changes for tumor proliferation for the drug-loaded NP. This observation was attributed to the higher A83B4C63 levels in the tumors for NP/A83-treated mice compared to those treated with CE/A83. Overall, the results demonstrated a potential for A83B4C63-loaded NP as a novel radio-sensitizer for the treatment of CRC.

3.
J Control Release ; 334: 335-352, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33933518

RESUMO

Phosphatase and TENsin homolog deleted on chromosome 10 (PTEN) is a major tumor-suppressor protein that is lost in up to 75% of aggressive colorectal cancers (CRC). The co-depletion of PTEN and a DNA repair protein, polynucleotide kinase 3'-phosphatase (PNKP), has been shown to lead to synthetic lethality in several cancer types including CRC. This finding inspired the development of novel PNKP inhibitors as potential new drugs against PTEN-deficient CRC. Here, we report on the in vitro and in vivo evaluation of a nano-encapsulated potent, but poorly water-soluble lead PNKP inhibitor, A83B4C63, as a new targeted therapeutic for PTEN-deficient CRC. Our data confirmed the binding of A83B4C63, as free or nanoparticle (NP) formulation, to intracellular PNKP using the cellular thermal shift assay (CETSA), in vitro and in vivo. Dose escalating toxicity studies in healthy CD-1 mice, based on measurement of animal weight changes and biochemical blood analysis, revealed the safety of both free and nano-encapsulated A83B4C63, at assessed doses of ≤50 mg/kg. Nano-carriers of A83B4C63 effectively inhibited the growth of HCT116/PTEN-/- xenografts in NIH-III nude mice following intravenous (IV) administration, but not that of wild-type HCT116/PTEN+/+ xenografts. This was in contrast to IV administration of A83B4C63 solubilized with the aid of Cremophor EL: Ethanol (CE), which led to similar tumor growth to that of formulation excipients (NP or CE without drug) or 5% dextrose. This observation was attributed to the higher levels of A83B4C63 delivered to tumor tissue by its NP formulation. Our data provide evidence for the success of NPs of A83B4C63, as novel synthetically lethal nano-therapeutics in the treatment of PTEN-deficient CRC. This research also highlights the potential of successful application of nanomedicine in the drug development process.


Assuntos
Neoplasias Colorretais , Polinucleotídeo 5'-Hidroxiquinase , Animais , Neoplasias Colorretais/tratamento farmacológico , Camundongos , Camundongos Nus , Nanomedicina , PTEN Fosfo-Hidrolase/deficiência , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores
4.
Pharmaceutics ; 12(11)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138058

RESUMO

The clinical use of 7-ethyl-10-hydroxy-camptothecin (SN-38), which is the active metabolite of irinotecan, has been hampered because of its practical water-insolubility. In this study, we successfully synthesized two self-associating SN-38-polymer drug conjugates to improve the water-solubility of SN-38, while retaining its anticancer activity. The polymeric micellar SN-38 conjugates were composed of either methoxy-poly(ethylene oxide)-block-poly(α-benzyl carboxylate-ε-caprolactone) conjugated to SN-38 at the PBCL end (mPEO-b-PBCL/SN-38) or mPEO-block-poly(α-carboxyl-ε-caprolactone) attached to SN-38 from the pendent-free carboxyl site (mPEO-b-PCCL/SN-38). The chemical structure of block copolymers was confirmed by 1H NMR. The physicochemical characterizations of their self-assembled structures including size, surface charge, polydispersity, critical micellar concentration, conjugation content and efficiency, morphology, kinetic stability, and in vitro release of SN-38 were compared between the two formulations. In vitro anticancer activities were evaluated by measuring cellular cytotoxicity and caspase activation by MTS and Caspase-Glo 3/7 assays, respectively. The hemolytic activity of both micellar structures against rat red blood cells was also measured. The results showed the formation of SN-38-polymeric micellar conjugates at diameters < 50 nm with a narrow size distribution and sustained release of SN-38 for both structures. The loading content of SN-38 in mPEO-b-PBCL and mPEO-b-PCCL were 11.47 ± 0.10 and 12.03 ± 0.17 (% w/w), respectively. The mPEO-b-PBCL/SN-38, end-capped micelles were kinetically more stable than mPEO-b-PCCL/SN-38. The self-assembled mPEO-b-PBCL/SN-38 and mPEO-b-PCCL/SN-38 micelles resulted in significantly higher cytotoxic effects than irinotecan against human colorectal cancer cell lines HCT116, HT-29, and SW20. The CRC cells were found to be 70-fold to 330-fold more sensitive to micellar SN-38 than irinotecan, on average. Both SN-38-incorporated micelles showed two-fold higher caspase-3/7 activation levels than irinotecan. The mPEO-b-PBCL/SN-38 micelles were not hemolytic, but mPEO-b-PCCL/SN-38 showed some hemolysis. The overall results from this study uphold mPEO-b-PBCL/SN-38 over mPEO-b-PCCL/SN-38 micellar formulation as an effective delivery system of SN-38 that warrants further preclinical investigation.

5.
Biomaterials ; 144: 17-29, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28818703

RESUMO

Traceable poly(ethylene oxide)-poly(ester) micelles were developed through chemical conjugation of a near-infrared (NIR) dye to the poly(ester) end by click chemistry. This strategy was tried for micelles with poly(ε-caprolactone) (PCL) or poly(α-benzyl carboxylate-ε-caprolactone) (PBCL) cores. The surface of both micelles was also modified with the breast cancer targeting peptide, P18-4. The results showed the positive contribution of PBCL over PCL core on micellar thermodynamic and kinetic stability as well as accumulation in primary orthotopic MDA-MB-231 tumors within 4-96 h following intravenous administration in mice. This was in contrast to in vitro studies where better uptake of PEO-PCL versus PEO-PBCL micelles by MDA-MB-231 cells was observed. The presence of P18-4 enhanced the in vitro cell uptake and homing of both polymeric micelles in breast tumors, but only at early time points. In conclusion, the use of developed NIR labeling technique provided means for following the fate of PEO-poly(ester) based nano-carriers in live animals. Our results showed micellar stabilization through the use of PBCL over PCL cores, to have a more significant effect in enhancing the level and duration of nano-carrier accumulation in primary breast tumors than the modification of polymeric micellar surface with breast tumor targeting peptide, P18-4.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Micelas , Peptídeos/química , Poliésteres/química , Polietilenoglicóis/química , Animais , Carbocianinas/administração & dosagem , Carbocianinas/farmacocinética , Linhagem Celular Tumoral , Feminino , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/farmacocinética , Camundongos Nus , Peptídeos/farmacocinética , Poliésteres/farmacocinética , Polietilenoglicóis/farmacocinética
6.
Drug Deliv Transl Res ; 7(4): 571-581, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28290050

RESUMO

The objective of this research was to develop polymeric micellar formulations of inhibitors of signal transducer and activator of transcription 3 (STAT3) dimerization, i.e., S3I-1757 and S3I-201, and evaluate the activity of successful formulations in B16-F10 melanoma, a STAT3 hyperactive cancer model, in vitro and in vivo. STAT3 inhibitory agents were encapsulated in methoxy poly(ethylene oxide)-b-poly(ε-caprolactone) (PEO114-b-PCL22) and methoxy poly(ethylene oxide)-b-poly(α-benzyl carboxylate-ε-caprolactone) (PEO114-b-PBCL20) micelles using co-solvent evaporation. Polymeric micelles of S3I-1757 showed high encapsulation efficiency (>88%), slow release profile (<32% release in 24 h) under physiological conditions, and a desirable average diameter for tumor targeting (33-54 nm). The same formulations showed low encapsulation efficiencies and rapid drug release for S3I-201. Further studies evidenced the delivery of functional S3I-1757 by polymeric micelles to B16-F10 melanoma cells, leading to a dose-dependent inhibition of cell growth and vascular endothelial growth factor (VEGF) production comparable with that of free drug. Encapsulation of S3I-1757 in polymeric micelles significantly reduced its cytotoxicity in normal bone marrow-derived dendritic cells (DCs). Micelles of S3I-1757 were able to significantly improve the function of B16-F10 tumor-exposed immunosuppressed DCs in the production of IL-12, an indication for functionality in the induction of cell-mediated immune response. In a B16-F10 melanoma mouse model, S3I-1757 micelles inhibited tumor growth and enhanced the survival of tumor-bearing mice more than free S3I-1757. Our findings show that both PCL- and PBCL-based polymeric micelles have potential for the solubilization and delivery of S3I-1757, a potent STAT3 inhibitory agent.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Micelas , Nanopartículas/administração & dosagem , Fator de Transcrição STAT3/antagonistas & inibidores , Ácidos Aminossalicílicos/administração & dosagem , Ácidos Aminossalicílicos/química , Ácidos Aminossalicílicos/farmacologia , Ácidos Aminossalicílicos/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Benzenossulfonatos/administração & dosagem , Benzenossulfonatos/química , Benzenossulfonatos/farmacologia , Benzenossulfonatos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Dimerização , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Portadores de Fármacos/uso terapêutico , Liberação Controlada de Fármacos , Feminino , Lactonas/administração & dosagem , Lactonas/química , Lactonas/farmacologia , Lactonas/uso terapêutico , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Nanopartículas/química , Nanopartículas/uso terapêutico , Poliésteres/administração & dosagem , Poliésteres/química , Poliésteres/farmacologia , Poliésteres/uso terapêutico , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico , Fator de Transcrição STAT3/metabolismo , Solubilidade , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA