Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(26): 14844-14850, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38885440

RESUMO

The 11S globulin legumin typically accounts for approximately 3% of the total protein in common beans (Phaseolus vulgaris). It was previously reported that a legumin peptide of approximately 20 kDa is resistant to pepsin digestion. Sequence prediction suggested that the pepsin-resistant peptide is located at the C-terminal end of the α-subunit, within a glutamic acid-rich domain, overlapping with a chymotrypsin-resistant peptide. Using purified legumin, the peptide of approximately 20 kDa was found to be resistant to pepsin digestion in a pH-dependent manner, and its location was determined by two-dimensional gel electrophoresis and LC-MS-MS. The location of the chymotrypsin-resistant peptide was confirmed by immunoblotting with peptide-specific polyclonal antibodies. The presence of a consensus site for proline hydroxylation and arabinosylation, the detection of hydroxyproline residues, purification by lectin affinity chromatography, and a difference in electrophoretic migration between the chymotrypsin- and pepsin-resistant peptides suggest the presence of a large O-glycan within these peptides.


Assuntos
Sequência de Aminoácidos , Quimotripsina , Pepsina A , Peptídeos , Phaseolus , Phaseolus/química , Pepsina A/química , Pepsina A/metabolismo , Quimotripsina/química , Quimotripsina/metabolismo , Peptídeos/química , Peptídeos/isolamento & purificação , Leguminas/química , Espectrometria de Massas em Tandem , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo
2.
Phytochemistry ; 205: 113489, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36328196

RESUMO

L-Asparaginase (EC 3.5.1.1) activity has been previously reported to fluctuate with the photoperiod in young pea leaves, with higher activity in the light. The present research sought to investigate this phenomenon in developing leaves of common bean (Phaseolus vulgaris L.). There are two genes coding for K+-dependent asparaginase in this species. Expression of PvASPG1 predominates over PvASPG2 in all tissues. The catalytic efficiency of recombinant PvASPG2 was approximately 2-fold lower than that of PvASPG1. Polyclonal antibodies were raised against a specific peptide present in PvASPG1 to use in immunoblotting. In developing seed, asparaginase protein levels in the seed coat stayed constant, whereas levels in cotyledon were lower and progressively declined. In young leaf, asparagine protein levels showed diurnal variation, increasing at the end of the dark period and slowly decreasing during the light period. This was paralleled by changes in activity levels in leaf extracts. These changes accompanied a transient increase in free asparagine concentration at the beginning of the light period. The present results demonstrated that K+-dependent asparaginase activity reaches a maximum level at the transition from dark to light, anticipating dawn, in young leaves of common bean.


Assuntos
Phaseolus , Asparaginase , Asparagina
3.
Front Plant Sci ; 13: 1046597, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438155

RESUMO

In common bean (Phaseolus vulgaris L.), postharvest seed coat darkening is an undesirable trait that affects crop value. The increased accumulation of proanthocyanidins (PAs) in the seed coat results in darker seeds in many market classes of colored beans after harvest. The precursors of PAs are synthesized in the cytoplasm, and subsequently get glycosylated and then transported to the vacuoles where polymerization occurs. Thus, vacuolar transporters play an important role in the accumulation of PAs. Here, we report that common bean genome contains 59 multidrug and toxic compound extrusion genes (PvMATEs). Phylogenetic analysis of putative PvMATEs with functionally characterized MATEs from other plant species categorized them into substrate-specific clades. Our data demonstrate that a vacuolar transporter PvMATE8 is expressed at a higher level in the pinto bean cultivar CDC Pintium (regular darkening) compared to 1533-15 (slow darkening). PvMATE8 localizes in the vacuolar membrane and rescues the PA deficient (tt12) mutant phenotype in Arabidopsis thaliana. Analysis of PA monomers in transgenic seeds together with wild-type and mutants suggests a possible feedback regulation of PA biosynthesis and accumulation. Identification of PvMATE8 will help better understand the mechanism of PA accumulation in common bean.

4.
Plant Sci ; 312: 111033, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34620437

RESUMO

The glutamine amidotransferase gene GAT1_2.1 is a marker of N status in Arabidopsis root, linked to a shoot branching phenotype. The protein has an N-terminal glutamine amidotransferase domain and a C-terminal extension with no recognizable protein domain. A purified, recombinant version of the glutamine amidotransferase domain was catalytically active as a glutaminase, with apparent Km value of 0.66 mM and Vmax value of 2.6 µkatal per mg. This form complemented an E. coli glutaminase mutant, ΔYneH. Spiking of root metabolite extracts with either the N-terminal or full length form purified from transformed tobacco leaves led to reciprocal changes in glutamine and ammonia concentration. No product derived from amido-15N-labeled glutamine was identified. Visualization of GAT1_2.1-YPF transiently expressed in tobacco leaves confirmed its mitochondrial localization. gat1_2.1 exhibited reduced growth as compared with wild-type seedlings on media with glutamine as sole nitrogen source. Results of targeted metabolite profiling pointed to a possible activation of the GABA shunt in the mutant following glutamine treatments, with reduced levels of glutamic acid, 2-oxoglutarate and γ-aminobutyric acid and increased levels of succinic acid. GAT1_2.1 may act as a glutaminase, in concert with Glutamate Dehydrogenase 2, to hydrolyze glutamine and channel 2-oxoglutarate to the TCA cycle under high nitrogen conditions.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/genética , Glutaminase/genética , Glutaminase/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/enzimologia , Transaminases/genética , Transaminases/metabolismo , Variação Genética , Genótipo , Raízes de Plantas/genética
5.
Plants (Basel) ; 8(5)2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091711

RESUMO

The common bean (Phaseolus vulgaris) constitutes an excellent source of vegetable dietary protein. However, there are sub-optimal levels of the essential amino acids, methionine and cysteine. On the other hand, P. vulgaris accumulates large amounts of the γ-glutamyl dipeptide of S-methylcysteine, and lower levels of free S-methylcysteine and S-methylhomoglutathione. Past results suggest two distinct metabolite pools. Free S-methylcysteine levels are high at the beginning of seed development and decline at mid-maturation, while there is a biphasic accumulation of γ-glutamyl-S-methylcysteine, at early cotyledon and maturation stages. A possible model involves the formation of S-methylcysteine by cysteine synthase from O-acetylserine and methanethiol, whereas the majority of γ-glutamyl-S-methylcysteine may arise from S-methylhomoglutathione. Metabolite profiling during development and in genotypes differing in total S-methylcysteine accumulation showed that γ-glutamyl-S-methylcysteine accounts for most of the total S-methylcysteine in mature seed. Profiling of transcripts for candidate biosynthetic genes indicated that BSAS4;1 expression is correlated with both the developmental timing and levels of free S-methylcysteine accumulated, while homoglutathione synthetase (hGS) expression was correlated with the levels of γ-glutamyl-S-methylcysteine. Analysis of S-methylated phytochelatins by liquid chromatography and high resolution tandem mass spectrometry revealed only small amounts of homophytochelatin-2 with a single S-methylcysteine. The mitochondrial localization of phytochelatin synthase 2-predominant in seed, determined by confocal microscopy of a fusion with the yellow fluorescent protein-and its spatial separation from S-methylhomoglutathione may explain the lack of significant accumulation of S-methylated phytochelatins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA