Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 26(26): 5859-5871, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32083772

RESUMO

Recently, an unprecedented observation of polar order, thermochromic behavior, and exotic mesophases in new chiral, bent-shaped systems with a -CH3 moiety placed at the transverse position of the central core was reported. Herein, a homologous series of compounds with even-numbered carbon chains from n=4 to 18 were synthesized, in which -Cl was substituted for -CH3 at the kink position and a drastic modification in the phase structure of the bent-shaped molecule was observed. An unusual stabilization of the cubic blue phase (BP) over a wide range of 16.4 °C has been witnessed. Two homologues in this series (1-12 and 1-14) exhibit an interesting phase sequence consisting of BPI/II, chiral nematic, twist grain boundary, smectic A, and smectic X (SmX) phases. The higher homologues (1-16 and 1-18) stabilize the SmX phase enantiotropically over the entire temperature range. Crystal structure analysis confirmed the bent molecular architecture, with a bent angle of 148°, and revealed the presence of two different molecular conformations in an asymmetric unit of compound 1-4. A DFT study corroborated that the -Cl moiety at the central core of the molecule led to an increase in the dipole moment along the transverse direction, which, in turn, facilitated the unusual stabilization of frustrated structures. Crystal polymorphism has been evidenced in three homologues (1-10, 1-12, and 1-14) of the series. On the application of mechanical pressure through grinding, compound 1-10 transformed from a bright yellow crystalline solid to a dark orange-green amorphous solid, which reversed upon dropwise addition of dichloromethane, indicating reversible mechanochromism in this class of compounds. In addition, excellent thermochromic behavior has been observed for compound 1-10 with a controlled temperature-color combination.

2.
Soft Matter ; 16(32): 7556-7561, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32706008

RESUMO

Many bent-core nematic liquid crystals exhibit unusual physical properties due to the presence of smectic clusters, known as "cybotactic" clusters, in the nematic phase. Here, we investigate the effect of these clusters on the complex shear modulus (G*(ω)) of two asymmetric bent-core liquid crystals using a microrheological technique. The compound with a shorter hydrocarbon chain (8OCH3) exhibits only a nematic (N) phase whereas the compound with a longer chain (16OCH3) exhibits both nematic (N) and smectic-A (SmA) phases. The rheological results are correlated with the measurements of curvature elastic constants. Our results show that the directional shear modulus of 16OCH3, just above the SmA to N phase transition temperature, is strikingly different than that of 8OCH3, owing to the smectic clusters. An approximate size of the clusters is estimated using a simple model. Therefore, microrheological studies on bent-core nematic liquid crystals are very useful in extracting information about underlying smectic clusters.

3.
Opt Express ; 27(4): 3861-3866, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30876010

RESUMO

We present polarization-independent optical shutters with a sub-millisecond switching time. The approach utilizes dual-frequency nematics doped with a dichroic dye. Two nematic cells with orthogonal alignment are driven simultaneously by a low-frequency or high-frequency electric field to switch the shutter either into a transparent or a light-absorbing state. The switching speed is accelerated via special short pulses of high amplitude voltage. The approach can be used in a variety of electro-optical devices.

4.
Phys Rev E ; 109(6-1): 064703, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39020964

RESUMO

Linear defects such as dislocations and disclinations in ordered materials attract foreign particles since they replace strong elastic distortions at the defect cores. In this work, we explore the behavior of isotropic droplets nucleating at singular disclinations in a nematic liquid crystal, predesigned by surface photopatterning. Experiments show that in the biphasic nematic-isotropic region, although the droplets are attracted to the disclination cores, their centers of mass shift away from the core centers as the temperature increases. The shift is not random, being deterministically defined by the surrounding director field. The effect is explained by the balance of interfacial anchoring and bulk elasticity. An agreement with the experiment can be achieved only if the model accounts for the disparity of the nematic elastic constants; the so-called one-constant approximation, often used in the theoretical analysis of liquid crystals, produces qualitatively wrong predictions. In particular, the experimentally observed shift towards the bend region around a +1/2 disclination core can be explained only when the bend constant is larger than the splay constant. The described dependence of the precise location of a foreign inclusion at defect cores on the elastic and surface anchoring properties can be used in rational design of microscale architectures.

5.
Phys Rev E ; 104(1-1): 014706, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34412267

RESUMO

We study the pair interaction of charged silica microrods in chiral nematic liquid crystals and show that the microrods with homeotropic surface anchoring form a bound state due to the competing effect of electrostatic (Coulomb) and elastic interactions. The robustness of the bound state is demonstrated by applying external electrical and mechanical forces that perturbs their equilibrium position as well as orientation. In the bound state we have measured the correlated thermal fluctuations of the position, using two-particle cross-correlation spectroscopy that uncovers their hydrodynamic interaction. These findings reveal unexplored aspects of liquid-crystal dispersions which are important for understanding the assembly and dynamics of nano- and microparticles in chiral nematic liquid crystals.

6.
Nat Commun ; 10(1): 3749, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434888

RESUMO

Production of stable multidimensional solitary waves is a grand challenge in modern science. Steering their propagation is an even harder problem. Here we demonstrate three-dimensional solitary waves in a nematic, trajectories of which can be steered by the electric field in a plane perpendicular to the field. The steering does not modify the properties of the background that remains uniform. These localized waves, called director bullets, are topologically unprotected multidimensional solitons of (3 + 2)D type that show fore-aft and right-left asymmetry with respect to the background molecular director; the symmetry is controlled by the field. Besides adding a whole dimension to the propagation direction and enabling controlled steering, the solitons can lead to applications such as targeted delivery of information and micro-cargo.

7.
Nat Commun ; 9(1): 2912, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30046035

RESUMO

Electric field-induced collective reorientation of nematic molecules is of importance for fundamental science and practical applications. This reorientation is either homogeneous over the area of electrodes, as in displays, or periodically modulated, as in electroconvection. The question is whether spatially localized three-dimensional solitary waves of molecular reorientation could be created. Here we demonstrate that the electric field can produce particle-like propagating solitary waves representing self-trapped "bullets" of oscillating molecular director. These director bullets lack fore-aft symmetry and move with very high speed perpendicularly to the electric field and to the initial alignment direction. The bullets are true solitons that preserve spatially confined shapes and survive collisions. The solitons are topologically equivalent to the uniform state and have no static analogs, thus exhibiting a particle-wave duality. Their shape, speed, and interactions depend strongly on the material parameters, which opens the door for a broad range of future studies.

8.
Nat Commun ; 9(1): 3528, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30166538

RESUMO

The original version of this article contained an error in the description of Supplementary Movie 7, which incorrectly read 'Collision resulting in annihilation of two solitons. U = 45.1 V, f = 600 Hz, T = 50 °C, d = 8.0 µm. The original movie is taken at the frame rate of 91 fps. The playback speed is 7 fps.' The correct version reads 'Death of a soliton at a dust particle. U = 65.6 V, f = 800 Hz, T = 50 °C, d = 7.7 µm. The original movie is taken at the frame rate of 92 fps. The playback speed is 7 fps.' The HTML has been updated to include a corrected version of the 'Description of Additional Supplementary Files' file.

9.
Phys Rev E ; 96(6-1): 062704, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29347367

RESUMO

We present a comprehensive set of measurements of optical, dielectric, diamagnetic, elastic, and viscous properties in the nematic (N) phase formed by a liquid crystalline dimer. The studied dimer, 1,7-bis-4-(4'-cyanobiphenyl) heptane (CB7CB), is composed of two rigid rodlike cyanobiphenyl segments connected by a flexible aliphatic link with seven methyl groups. CB7CB and other nematic dimers are of interest due to their tendency to adopt bent configurations and to form two states possessing a modulated nematic director structure, namely, the twist-bend nematic, N_{TB}, and the oblique helicoidal cholesteric, Ch_{OH}, which occurs when the achiral dimer is doped with a chiral additive and exposed to an external electric or magnetic field. We characterize the material parameters as functions of temperature in the entire temperature range of the N phase, including the pretransitional regions near the N-N_{TB} and N-to-isotropic (I) transitions. The splay constant K_{11} is determined by two direct and independent techniques, namely, detection of the Frederiks transition and measurement of director fluctuation amplitudes by dynamic light scattering (DLS). The bend K_{33} and twist K_{22} constants are measured by DLS. K_{33}, being the smallest of the three constants, shows a strong nonmonotonous temperature dependence with a negative slope in both N-I and N-N_{TB} pretransitional regions. The measured ratio K_{11}/K_{22} is larger than 2 in the entire nematic temperature range. The orientational viscosities associated with splay, twist, and bend fluctuations in the N phase are comparable to those of nematics formed by rodlike molecules. All three show strong temperature dependence, increasing sharply near the N-N_{TB} transition.

10.
Nat Commun ; 7: 11403, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27097797

RESUMO

In soft condensed matter physics, effective interactions often emerge due to the spatial confinement of fluctuating fields. For instance, microscopic particles dissolved in a binary liquid mixture are subject to critical Casimir forces whenever their surfaces confine the thermal fluctuations of the order parameter of the solvent close to its critical demixing point. These forces are theoretically predicted to be nonadditive on the scale set by the bulk correlation length of the fluctuations. Here we provide direct experimental evidence of this fact by reporting the measurement of the associated many-body forces. We consider three colloidal particles in optical traps and observe that the critical Casimir force exerted on one of them by the other two differs from the sum of the forces they exert separately. This three-body effect depends sensitively on the distance from the critical point and on the chemical functionalisation of the colloid surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA