Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999926

RESUMO

Advanced Oxidation Processes (AOPs) offer promising methods for disinfection by generating radical species like hydroxyl radicals, superoxide anion radicals, and hydroxy peroxyl, which can induce oxidative stress and deactivate bacterial cells. Photocatalysis, a subset of AOPs, activates a semiconductor using specific electromagnetic wavelengths. A novel material, Cu/Cu2O/CuO nanoparticles (NPs), was synthesized via a laser ablation protocol (using a 1064 nm wavelength laser with water as a solvent, with energy ranges of 25, 50, and 80 mJ for 10 min). The target was sintered from 100 °C to 800 °C at rates of 1.6, 1.1, and 1 °C/min. The composite phases of Cu, CuO, and Cu2O showed enhanced photocatalytic activity under visible-light excitation at 368 nm. The size of Cu/Cu2O/CuO NPs facilitates penetration into microorganisms, thereby improving the disinfection effect. This study contributes to synthesizing mixed copper oxides and exploring their activation as photocatalysts for cleaner surfaces. The electronic and electrochemical properties have potential applications in other fields, such as capacitor materials. The laser ablation method allowed for modification of the band gap absorption and enhancement of the catalytic properties in Cu/Cu2O/CuO NPs compared to precursors. The disinfection of E. coli with Cu/Cu2O/CuO systems serves as a case study demonstrating the methodology's versatility for various applications, including disinfection against different microorganisms, both Gram-positive and Gram-negative.


Assuntos
Cobre , Escherichia coli , Cobre/química , Escherichia coli/efeitos dos fármacos , Catálise , Nanopartículas Metálicas/química , Lasers , Oxirredução , Desinfecção/métodos , Luz
2.
J Environ Manage ; 350: 119548, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38007926

RESUMO

The ability of the ultrasound (US) combined with peroxymonosulfate (PMS), and a carbonaceous material (BC) was evaluated in the degradation of a model pollutant (acetaminophen, ACE). The US/BC/PMS system was compared with other possible systems (US, oxidation by PMS, BC adsorption, BC/PMS, US/PMS, and US/BC. The effect of the ultrasonic frequency (40, 375, and 1135 kHz) on the kinetics and synergy of the ACE removal was evaluated. In the US system, kinetics was favored at 375 kHz due to the increased production of hydroxyl radicals (HO•), but this did not improve in the US/PMS and US/BC systems. However, synergistic and antagonistic effects were observed at the low and high frequencies where the production of radicals is less efficient but there is an activation of PMS through mechanical effects. US/BC/PMS at 40 kHz was the most efficient system obtaining ∼95% ACE removal (40 µM) in the first 10 min of treatment, and high synergy (S = 10.30). This was promoted by disaggregation of the carbonaceous material, increasing the availability of catalytic sites where PMS is activated. The coexistence of free-radical and non-radical pathways was analyzed. Singlet oxygen (1O2) played the dominant role in degradation, while HO• and sulfate radicals (SO4•-), scarcely generated at low frequency, play a minimum role. Performance in hospital wastewater (HWW), urine, and seawater (SW) evidenced the competition of organic matter by BC active sites and reactive species and the removal enhancement when Cl- is present. Besides, toxicity decreased by ∼20% after treatment, being the system effective after three cycles of reuse.


Assuntos
Ultrassom , Água , Peróxidos/química , Oxirredução
3.
J Environ Manage ; 366: 121930, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39053376

RESUMO

The sonochemical system is highly effective at degrading hydrophobic substances but has limitations when it comes to eliminating hydrophilic compounds. This study examines the impact of organic and inorganic additives on improving the sonochemical degradation of hydrophilic pollutants in water. The effects of adding an organic substance (CCl4) and two inorganic ions (Fe2+ and HCO3-) were tested. The treatment was focused on a representative hydrophilic antibiotic, cefadroxil (CDX). Initially, the sonodegradation of CDX without additives was assessed and compared with two reference pollutants more hydrophobic than CDX: dicloxacillin (DCX) and methyl orange (MO). The results highlighted the limitations of ultrasound alone in degrading CDX. Subsequently, the impact of the additives on enhancing the removal of this recalcitrant pollutant was evaluated at two frequencies (375 and 990 kHz). A significant improvement in the CDX degradation was observed with the presence of CCl4 and Fe2+ at both frequencies. Increasing CCl4 concentration led to greater CDX elimination, whereas a high Fe2+ concentration had detrimental effects. To identify the reactive sites on CDX towards the species generated with the additives, theoretical calculations (i.e. Fukui indices and HOMO-LUMO gaps) were performed. These analyses indicated that the ß-lactam and dihydrothiazine rings on CDX are highly reactive towards oxidizing species. This research enhances our understanding of the relationship between the structural characteristics of contaminants and the sonochemical frequency in the action of additives having diverse nature.

4.
Molecules ; 28(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36770778

RESUMO

Mid-high-frequency ultrasound (200-1000 kHz) eliminates organic pollutants and also generates H2O2. To take advantage of H2O2, iron species can be added, generating a hybrid sono-Fenton process (sF). This paper presents the possibilities and limitations of sF. Heterogeneous (a natural mineral) and homogeneous (Fe2+ and Fe3+ ions) iron sources were considered. Acetaminophen, ciprofloxacin, and methyl orange were the target organic pollutants. Ultrasound alone induced the pollutants degradation, and the dual competing role of the natural mineral (0.02-0.20 g L-1) meant that it had no significant effects on the elimination of pollutants. In contrast, both Fe2+ and Fe3+ ions enhanced the pollutants' degradation, and the elimination using Fe2+ was better because of its higher reactivity toward H2O2. However, the enhancement decreased at high Fe2+ concentrations (e.g., 5 mg L-1) because of scavenger effects. The Fe2+ addition significantly accelerated the elimination of acetaminophen and methyl orange. For ciprofloxacin, at short treatment times, the degradation was enhanced, but the pollutant complexation with Fe3+ that came from the Fenton reaction caused degradation to stop. Additionally, sF did not decrease the antimicrobial activity associated with ciprofloxacin, whereas ultrasound alone did. Therefore, the chemical structure of the pollutant plays a crucial role in the feasibility of the sF process.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Peróxido de Hidrogênio/química , Acetaminofen , Oxirredução , Poluentes Químicos da Água/análise , Ferro/química , Minerais , Ciprofloxacina
5.
Molecules ; 28(11)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37299012

RESUMO

A chromate of copper and cobalt (Φy) was synthesized and characterized. Φy activated peroxymonosulfate (PMS) to degrade ciprofloxacin (CIP) in water. The Φy/PMS combination showed a high degrading capability toward CIP (~100% elimination in 15 min). However, Φy leached cobalt (1.6 mg L-1), limiting its use for water treatment. To avoid leaching, Φy was calcinated, forming a mixed metal oxide (MMO). In the combination of MMO/PMS, no metals leached, the CIP adsorption was low (<20%), and the action of SO4•- dominated, leading to a synergistic effect on pollutant elimination (>95% after 15 min of treatment). MMO/PMS promoted the opening and oxidation of the piperazyl ring, plus the hydroxylation of the quinolone moiety on CIP, which potentially decreased the biological activity. After three reuse cycles, the MMO still presented with a high activation of PMS toward CIP degradation (90% in 15 min of action). Additionally, the CIP degradation by the MMO/PMS system in simulated hospital wastewater was close to that obtained in distilled water. This work provides relevant information on the stability of Co-, Cu-, and Cr-based materials under interaction with PMS and the strategies to obtain a proper catalyst to degrade CIP.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Antibacterianos/farmacologia , Cobre , Poluentes Químicos da Água/análise , Peróxidos , Óxidos , Ciprofloxacina/farmacologia , Cobalto
6.
J Environ Manage ; 323: 116148, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36088761

RESUMO

Biochar (BP) obtained from palm fiber wastes was combined with H2O2, peroxymonosulfate (PMS), or persulfate (PDS) to treat valsartan, acetaminophen, and cephalexin in water. BP activated PMS and PDS but no H2O2. Computational calculations indicated that interactions of PMS and PDS with BP are more favored than those with HP. The highest synergistic effect was obtained for the removal of valsartan by BP + PMS. This carbocatalytic process was optimized, evaluating the effects of pH, BP dose, and peroxymonosulfate concentration, and minimizing the oxidant quantity to decrease costs and environmental impacts of the process. SO4•-, HO•, 1O2, and O2•- were the agents involved in the degradation of the pharmaceuticals. The reusability of BP was tested, showing that the carbocatalytic process removed ∼80% of target pollutants after 120 min of treatment even at the fourth reuse cycle. Also, the process decreased the phytotoxicity of the treated sample. Simulated hospital wastewater was treated and its components induced competing effects, but the system achieved the target pharmaceuticals removal in this matrix. Additionally, the analysis of environmental impact using a life cycle assessment unraveled that the carbocatalytic process had a carbon footprint of 2.87 Kg CO2-Eq, with the biochar preparation (which involves the use of ZnCl2 and electric energy consumption) as the main hotspot in the process.


Assuntos
Oxidantes , Poluentes Químicos da Água , Acetaminofen , Dióxido de Carbono/análise , Cefalexina/análise , Carvão Vegetal , Peróxidos , Preparações Farmacêuticas , Valsartana/análise , Águas Residuárias/análise , Água/análise , Poluentes Químicos da Água/análise
7.
J Environ Manage ; 315: 115119, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35500483

RESUMO

A semiempirical approach considering the rate of reactive chlorine species-RCS- production (ΦE) as a function of current and Cl- concentration for the modeling of acetaminophen (ACE) degradation is presented. A filter-press reactor having a Ti/RuO2-ZrO2 (Sb2O3 doped) anode, NaCl (0.04-0.1 mol L-1) as supporting electrolyte, and operated in continuous mode, was considered. A current of 100 mA and a flow of 11 mL min-1 favored the electrogeneration of RCS and ACE degradation. Hydraulic retention time and ΦE were the most relevant parameters for the RCS production. These two parameters, plus the pollutant concentration, were very determinant for the ACE degradation. The model successfully reproduced the ACE removal in distilled water at different concentrations (10, 20, 40, and 60 mg L-1). The electrochemical system achieved removals between 80 and 100% of ACE in distilled water. The ACE treatment in actual seawater (a chloride-rich matrix, 0.539 mol L-1 of Cl-) was assessed, and the degradation was simulated using the developed model. The competing role toward electrogenerated RCS by intrinsic organic matter (3.2 mg L-1) in the seawater was a critical point, and the simulated values fitted well with the experimental data. Finally, the action of the electrochemical system on ciprofloxacin (CIP) in real seawater and its antimicrobial activity was tested. CIP removal (100% at 120 s) was faster than that observed for ACE (100% of degradation after 180 s) due to CIP has amine groups that are more reactive toward RCS than phenol moiety on ACE. Moreover, the system removed 100% of the antimicrobial activity associated with CIP, indicating a positive environmental effect of the treatment.


Assuntos
Anti-Infecciosos , Poluentes Químicos da Água , Purificação da Água , Cloretos , Cloro , Ciprofloxacina/farmacologia , Eletrodos , Oxirredução , Preparações Farmacêuticas , Águas Salinas , Poluentes Químicos da Água/análise
8.
Molecules ; 26(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199337

RESUMO

This study aimed to understand the adsorption process of cephalexin (CPX) from aqueous solution by a biochar produced from the fiber residue of palm oil. Scanning electron microscopy, Fourier transform infrared spectroscopy, Boehm titration, and the point of zero charge were used to characterize the morphology and surface functional groups of the adsorbent. Batch tests were carried out to evaluate the effects of the solution pH, temperature, and antibiotic structure. The adsorption behavior followed the Langmuir model and pseudo-second-order model with a maximum CPX adsorption capacity of 57.47 mg g-1. Tests on the thermodynamic behavior suggested that chemisorption occurs with an activation energy of 91.6 kJ mol-1 through a spontaneous endothermic process. Electrostatic interactions and hydrogen bonding represent the most likely adsorption mechanisms, although π-π interactions also appear to contribute. Finally, the CPX removal efficiency of the adsorbent was evaluated for synthetic matrices of municipal wastewater and urine. Promising results were obtained, indicating that this adsorbent can potentially be applied to purifying wastewater that contains trace antibiotics.


Assuntos
Cefalexina/análise , Óleo de Palmeira/química , Poluentes Químicos da Água/análise , Adsorção , Carvão Vegetal/química , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Purificação da Água
9.
J Environ Manage ; 261: 110224, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32148294

RESUMO

This work presents the degradation of ampicillin (a highly consumed ß-lactam antibiotic) in aqueous media by sonochemical advanced oxidation processes. Initially, effects of frequency, power and operation mode (continuous vs. pulsed) on the antibiotic degradation by sonochemistry were analyzed. Then, under the suitable operational conditions, pollutant degradation and antimicrobial activity (AA) evolution were monitored. Afterwards, computational calculations were done to establish the possible attacks by the hydroxyl radical to the ampicillin structure. Additionally, the antibiotic degradation in synthetic hydrolyzed urine by ultrasound was performed. Finally, the combination of sonochemistry with Fenton (sono-Fenton) and photo-Fenton (sono-photo-Fenton) was evaluated. Our research showed that ampicillin removal was favored at low frequency, high power (i.e., 375 kHz, 24.4 W) and continuous mode (exhibiting an initial degradation rate of 0.78 µM min-1). Interestingly, ampicillin degradation in the hydrolyzed urine by sonochemistry alone was favored by matrix components (i.e., the pollutant showed a degradation rate in urine higher than in distilled water). The sonochemical process decreased the antimicrobial activity from the treated water (100% removal after 75 min of treatment), which was related to attacks of hydroxyl radical on active nucleus (the computational analysis showed high electron density on sulfur, oxygen and carbon atoms belonging to the penicillin core). Sono-photo-Fenton system achieved the fastest degradation and highest mineralization of the pollutant (40% of organic carbon removal at 180 min of treatment). All these aspects reveal the good possibility of sonochemical advanced oxidation technologies application for the treatment of antibiotics even in complex aqueous matrices such as hydrolyzed urine.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Ampicilina , Peróxido de Hidrogênio , Oxirredução
10.
J Environ Manage ; 213: 98-108, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29482094

RESUMO

The removal of the widely used antibiotic norfloxacin (NOR), the presence of which has been reported in natural water, was evaluated using rice (RH) and coffee (CH) husk wastes as adsorbents. Low particle sizes and natural pH in distilled water favored NOR elimination in both materials. In order to investigate the type of adsorption, the data was adjusted to the Langmuir, Freundlich and Redlich-Peterson isotherms. The best fit for the Langmuir and Redlich-Peterson isotherms suggested a monolayer-type adsorption model. Kinetic models of pseudo first and second order were also evaluated, the latter being the most suitable to represent the NOR adsorption phenomenon. Meanwhile, the intraparticle diffusion model indicated that the adsorption of NOR occurs both at the surface and within the pores of the material. Studies performed on thermodynamic aspects such as activation energy (Ea), enthalpy change (ΔH˚) and Gibbs free energy change (ΔG˚) suggest that the physisorption of the pollutant takes place through a spontaneous endothermic process. Additionally, PZC determination, Boehm method, chemical composition, thermodynamic analysis, and FTIR spectra before and after the adsorption of the antibiotic suggest that in CH adsorbents this occurred mainly through electrostatic interactions, while in RH hydrogen bonds also contributed significantly. Finally, the efficiency of natural adsorbents for the removal of NOR was evaluated in synthetic matrices of municipal wastewater and urine, and promising results were obtained despite the complexity of these matrices. The results presented in this work show the potential application of RH and CH residues as a low-cost alternative for the removal of NOR even in complex matrices. However, despite the similarities between the materials, CH waste showed better properties for the removal of the tested NOR due to its higher surface area, lower PZC and higher number of acid groups.


Assuntos
Norfloxacino/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água , Adsorção , Coffea , Café , Concentração de Íons de Hidrogênio , Cinética , Oryza , Temperatura , Termodinâmica , Água , Abastecimento de Água
11.
J Environ Manage ; 198(Pt 1): 256-265, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28475964

RESUMO

This paper presents the Staphylococcus aureus inactivation in a simulated wastewater treatment plant effluent by different electrochemical techniques, including the photo-electro-Fenton process. S. aureus, dissolved organic carbon (DOC), total oxidants and H2O2 concentrations, as well as pH, were monitored during the assays. An electrolytic cell, including a UVA lamp, a gas diffusion electrode (GDE) as cathode and an IrO2 anode, was used to conduct the experiments under galvanostatic conditions (20 mA). Low inactivation (-0.4) and low DOC removal were achieved within 120 min when applying the GDE-IrO2 system, in which bacteria disinfection was caused by the generated H2O2. When light was combined with GDE-IrO2, the process efficiency noticeably increased (-3.7 log inactivation) due to the synergistic effect between UVA and H2O2. Introducing iron (5 mg L-1 Fe2+) into the system also produced higher disinfection and DOC mineralization. The electro-Fenton process (GDE-IrO2+Fe2+) led to a bacterial reduction of -0.9 log units and DOC reduction of 14%, while with the photo-electro-Fenton process (GDE-IrO2+UVA + Fe2+) -5.2 units of bacteria and 26% of DOC were removed. Increasing the current intensity (20 mA, 30 mA and 40 mA) in the photo-electro-Fenton system increased H2O2 production and, consequently, augmented the bacterial inactivation (-5.2 log, -6.2 log and -6.5 log, respectively). However, mineralization extent slightly increased or remained practically the same. When comparing the influence of Fe2+ and Fe3+ on photo-electro-Fenton, similar S. aureus inactivation was observed, while DOC removal was higher with Fe2+ (31%) than with Fe3+ (19%). Finally, by testing the system with a Ti anode, the direct anodic oxidation contribution of the IrO2 anode was identified as negligible.


Assuntos
Staphylococcus aureus , Águas Residuárias , Desinfecção , Peróxido de Hidrogênio , Ferro , Oxirredução , Purificação da Água
12.
J Environ Manage ; 190: 72-79, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28039821

RESUMO

To provide new insights toward the selection of the most suitable AOP for isoxazolyl penicillins elimination, the degradation of dicloxacillin, a isoxazolyl penicillin model, was studied using different advanced oxidation processes (AOPs): ultrasound (US), photo-Fenton (UV/H2O2/Fe2+) and TiO2 photocatalysis (UV/TiO2). Although all processes achieved total removal of the antibiotic and antimicrobial activity, and increased the biodegradability level of the solutions, significant differences concerning the mineralization extend, the pH of the solution, the pollutant concentration and the chemical nature of additives were found. UV/TiO2 reached almost complete mineralization; while ∼10% mineralization was obtained for UV/H2O2/Fe2+ and practically zero for US. Effect of initial pH, mineral natural water and the presence of organic (glucose, 2-propanol and oxalic acid) were then investigated. UV/H2O2/Fe2+ and US processes were improved in acidic media, while natural pH favored UV/TiO2 system. According to both the nature of the added organic compound and the process, inhibition, no effect or enhancement of the degradation rate was observed. The degradation in natural mineral water showed contrasting results according to the antibiotic concentration: US process was enhanced at low concentration of dicloxacillin followed by detrimental effects at high substrate concentrations. A contrary effect was observed during photo-Fenton, while UV/TiO2 was inhibited in all of cases. Finally, a schema illustrating the enhancement or inhibiting effects of water matrix is proposed as a tool for selecting the best process for isoxazolyl penicillins degradation.


Assuntos
Penicilinas/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , 2-Propanol/química , Bicarbonatos/química , Biodegradação Ambiental , Catálise , Glucose/química , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Ferro/química , Ácido Oxálico/química , Oxirredução , Penicilinas/metabolismo , Titânio/química , Ultrassom/métodos , Raios Ultravioleta , Águas Residuárias/química , Águas Residuárias/microbiologia , Poluentes Químicos da Água/metabolismo
13.
Parasitol Res ; 114(7): 2587-97, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25924793

RESUMO

Six species of terns, which breed on the Arabian Peninsula, were examined for head chewing lice of the genus Saemundssonia in four different islands around the coasts of Saudi Arabia, both in the Red Sea and in the Arabian Gulf. Four louse species were collected: Saemundssonia laticaudata, Saemundssonia melanocephalus, Saemundssonia meridiana and Saemundssonia sternae, of which three are recorded for the first time from this region. Also, we record three new host-louse associations for the world-Saemundssonia laticaudata and Saemundssonia sternae from white-cheeked terns and Saemundssonia melanocephalus from Saunders's terns-including a host-switch event of Saemundssonia laticaudata on white-cheeked terns in the Karan Island population. Gene bank data for the COI gene from seven species of Saemundssonia that infest marine birds were used to propose evolutionary trees using two different statistical methods: maximum parsimony (MP) and neighbour joining (NJ). The result indicated that the tree which was produced by NJ is likely to be more accurate as it appeared more compatible with hosts' phylogeny. The trees indicate relationships between tern Saemundssonia and congeneric species from other marine birds, especially from gulls. An ANOVA was also conducted to test the mean parasite load for each tern species studied, and results indicate that there is a relation between louse loads and colonization behaviour of the hosts. Data from lice examined and illustrations of lice and their hosts are also included.


Assuntos
Doenças das Aves/parasitologia , Charadriiformes/parasitologia , Iscnóceros/classificação , Infestações por Piolhos/veterinária , Animais , Cruzamento , Ecologia , Feminino , Iscnóceros/genética , Infestações por Piolhos/parasitologia , Masculino , Filogenia , Arábia Saudita
14.
Artigo em Inglês | MEDLINE | ID: mdl-25438130

RESUMO

The photocalytic degradation of dicloxacillin (DXC) using TiO2 was studied in synthetic and natural waters. The degradation route and the effect of different experimental variables such as pH, applied power, and the initial concentrations of DXC and the catalyst were investigated. The best performances were achieved at a natural pH 5.8 and using 2.0 g L(-1) of TiO2 with 150 W of applied power. The photodegradation process followed Langmuir-Hinshelwood kinetics. The water matrix effect was evaluated in terms of degradation efficiency in the presence of organic compounds (oxalic acid, glucose), Fe(2+) ion and natural water. An increase in degradation was observed when ferrous ion was part of the solution, but the process was inhibited with all evaluated organic compounds. Similarly, inhibition was observed when natural water was used instead of distilled water. The extent of degradation of the process was evaluated following the evolution of chemical oxygen demand (COD), antimicrobial activity (AA), total organic carbon (TOC) and biochemical oxygen demand (BOD5). Total removal of DXC was achieved after 120 min of treatment and 95% mineralization was observed after 480 min of treatment. Additionally, the total removal of antimicrobial activity and a high level of biodegradability were observed after the photocalytical system had been operating for 240 min.


Assuntos
Antibacterianos/análise , Dicloxacilina/análise , Fotólise , Titânio/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Antibacterianos/química , Antibacterianos/efeitos da radiação , Análise da Demanda Biológica de Oxigênio , Catálise , Dicloxacilina/química , Dicloxacilina/efeitos da radiação , Água Doce/química , Concentração de Íons de Hidrogênio , Cinética , Águas Residuárias/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação , Purificação da Água/instrumentação
15.
Environ Sci Technol ; 48(4): 2218-25, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24455968

RESUMO

The photodegradation of chlorothalonil, a polychlorinated aromatic fungicide widely used in agriculture, was investigated under ultraviolet-visible irradiation in the presence and absence of different humic substances that significantly enhance the chlorothalonil phototransformation. On the basis of a kinetic model, an analytical study, the effect of scavengers, the chlorothalonil phosphorescence measurement, and varying irradiation conditions, it was possible to demonstrate that this accelerating effect is due to their capacity to reduce the chlorothalonil triplet state via H-donor reaction and to energy transfer from the triplet humic to ground state chlorothalonil. Energy transfer occurs at wavelengths below 450 nm and accounts for up to 30% of the reaction in deoxygenated medium upon irradiation with polychromatic light (300-450 nm). This process is more important with Elliott humic and fulvic acids and with humic acids extracted from natural carbonaceous material than with Nordic NOM and Pahokee peat humic acids. The obtained results are of high relevance to understanding the processes involved in chlorothalonil phototransformation and the photoreactivity of humic substances. Chlorothalonil is one of the rare molecules shown to react by energy transfer from excited humic substances.


Assuntos
Transferência de Energia , Substâncias Húmicas/análise , Luz , Nitrilas/efeitos da radiação , Fotólise/efeitos da radiação , Ar , Fungicidas Industriais/química , Fungicidas Industriais/efeitos da radiação , Cinética , Nitrilas/química , Oxigênio/química , Solo , Soluções , Raios Ultravioleta
16.
Oecologia ; 174(4): 1085-95, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24276773

RESUMO

In grasslands, sustained nitrogen loading would increase the proportion of assimilated carbon allocated to shoot growth (A shoot), because it would decrease allocation to roots and also encourage the contribution of species with inherently high A shoot. However, in situ measurements of carbon allocation are scarce. Therefore, it is unclear to what extent species that coexist in grasslands actually differ in their allocation strategy or in their response to nitrogen. We used a mobile facility to perform steady-state (13)C-labeling of field stands to quantify, in winter and autumn, the daily relative photosynthesis rate (RPR~tracer assimilated over one light-period) and A shoot (~tracer remaining in shoots after a 100 degree days chase period) in four individual species with contrasting morpho-physiological characteristics coexisting in a temperate grassland of Argentina, either fertilized or not with nitrogen, and either cut intermittently or grazed continuously. Plasticity in response to nitrogen was substantial in most species, as indicated by positive correlations between A shoot and shoot nitrogen concentration. There was a notable interspecific difference: productive species with higher RPR, enhanced by fertilization and characterized by faster leaf turnover rate, allocated ~20% less of the assimilated carbon to shoot growth than species of lower productivity (and quality) characterized by longer leaf life spans and phyllochrons. These results imply that, opposite to the expected response, sustained nitrogen loading would change little the A shoot of grassland communities if increases at the species-level are offset by decreases associated with replacement of 'low RPR-high A shoot' species by 'high RPR-low A shoot' species.


Assuntos
Ciclo do Carbono , Carbono/metabolismo , Nitrogênio/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Argentina , Isótopos de Carbono/análise , Modelos Biológicos , Fotossíntese/fisiologia
17.
Rev Med Chil ; 142(5): 567-73, 2014 May.
Artigo em Espanhol | MEDLINE | ID: mdl-25427012

RESUMO

BACKGROUND: The prevalence of atopy in asthmatic children is widely variable around the world as demonstrated by large multicentric international studies. AIM: To determine the prevalence of atopy, defined as a positive reaction to one or more allergens in the skin prick test (SPT), in children with persistent asthma. MATERIAL AND METHODS: We studied 1,199 children (54% male), aged between 4 and 16 years with confirmed diagnosis of asthma and followed at a Department of Pediatric Respiratory Medicine, between 2006 and 2011. SPT was performed according to international recommendations using standardized aeroallergens, in the forearm. A positive reaction was defined as a wheal ≥ 3 mm to one or more allergens. RESULTS: The overall prevalence of atopy (positive SPT) was 49.4% (95% confidence interval (CI) 46.5-52.2) and there was a significant trend towards a higher prevalence with increasing age (p < 0.01). The main allergens with positive reactions were Dermatophagoides with 24.9% (95% CI 26.7-31.9), grass 24.0% (95% CI 21.6-26.5), weeds 19.0% (95% CI 16.9-21.4), cat 17.7% (95% CI 15.4-20.2), and Alternaria with 11.0% (95% CI 9.1-13.1). Sixty five percent of positive children reacted to one or more allergens. There were no adverse reactions. CONCLUSIONS: In the southern metropolitan area of Santiago de Chile, half of children with asthma are sensitized to common aeroallergens.


Assuntos
Alérgenos/análise , Asma/epidemiologia , Hipersensibilidade/epidemiologia , Adolescente , Animais , Asma/etiologia , Gatos , Criança , Pré-Escolar , Chile/epidemiologia , Cães , Feminino , Humanos , Hipersensibilidade/etiologia , Masculino , Prevalência , Testes Cutâneos , Inquéritos e Questionários
18.
Environ Sci Pollut Res Int ; 31(5): 6782-6814, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38165540

RESUMO

This study presents a systematic review of the scientific and technological production related to the use of systems based on UV, H2O2, and Cl2 for the elimination of antibiotic-resistant bacteria (ARB) and genes associated with antibiotic resistance (ARGs). Using the Pro Know-C (Knowledge Development Process-Constructivist) methodology, a portfolio was created and analyzed that includes 19 articles and 18 patents published between 2011 and 2022. The results show a greater scientific-technological production in UV irradiation systems (8 articles and 5 patents) and the binary combination UV/H2O2 (9 articles and 4 patents). It was emphasized that UV irradiation alone focuses mainly on the removal of ARB, while the addition of H2O2 or Cl2, either individually or in binary combinations with UV, enhances the removal of ARB and ARG. The need for further research on the UV/H2O2/Cl2 system is emphasized, as gaps in the scientific-technological production of this system (0 articles and 2 patents), especially in its electrochemically assisted implementation, have been identified. Despite the gaps identified, there are promising prospects for the use of combined electrochemically assisted UV/H2O2/Cl2 disinfection systems. This is demonstrated by the effective removal of a wide range of contaminants, including ARB, fungi, and viruses, as well as microorganisms resistant to conventional disinfectants, while reducing the formation of toxic by-products.


Assuntos
Peróxido de Hidrogênio , Purificação da Água , Antagonistas de Receptores de Angiotensina , Purificação da Água/métodos , Cloro , Inibidores da Enzima Conversora de Angiotensina , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Desinfecção/métodos , Raios Ultravioleta
19.
Chemosphere ; 349: 140888, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070615

RESUMO

A tubular porous stainless steel membrane contactor was characterized in terms of ozone-water mass transport, as well as its application in removing 23 pharmaceuticals (PhACs) detected in the secondary-treated municipal wastewater, under continuous mode operation. The volumetric mass transfer coefficient (KLa) was evaluated based on liquid flow rate, gas flow rate, and ozone gas concentration. The KLa values were substantially improved with an increment in liquid flow rate (1.6 times from 30 to 70 dm3 h-1) and gas flow rate (3.6 times from 0.30 to 0.85 Ndm3 min-1) due to the improved mixing in the gas-liquid interface. For the lowest liquid flow rate (30 dm3 h-1), the water phase boundary layer (82%) exhibited the major ozone transfer resistance, but it became almost comparable with membrane resistance for the highest liquid flow rate (70 dm3 h-1). Additionally, the influence of the specific ozone dose (0.39, 0.53, and 0.69 g O3 g DOC-1) and ozone inlet gas concentration ( [Formula: see text]  = 27, 80, and 134 g Nm-3) were investigated in the elimination of 23 PhACs found in secondary-treated municipal wastewater. An ozone dose of 0.69 g O3 g DOC-1 and residence time of 60 s resulted in the removal of 12 out of the 23 compounds over 80%, while 17 compounds were abated above 60%. The elimination of PhACs was strongly correlated with kinetic reaction constants values with ozone and hydroxyl radicals (kO3 and kHO•), leading to a characteristic elimination pattern for each group of contaminants. This study demonstrates the high potential of membrane contactors as an appealing alternative for ozone-driven wastewater treatment.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Aço Inoxidável , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Água , Preparações Farmacêuticas
20.
Sci Total Environ ; 925: 171625, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38467258

RESUMO

Catalytic ozonation using faujasite-type Y zeolite with two different SiO2/Al2O3 molar ratios (60 and 12) was evaluated for the first time in the removal of 25 pharmaceutical compounds (PhCs) present in real effluents from two municipal wastewater treatment plants both located in the Mediterranean coast of Spain. Additionally, control experiments including adsorption and direct ozonation, were conducted to better understand the fundamental aspects of the different individual systems in wastewater samples. Commercial zeolites were used in sodium form (NaY). The results showed that the simultaneous use of ozone and NaY zeolites significantly improved the micropollutants degradation rate, able to degrade 95 % of the total mixture of PhCs within the early 9 min using the zeolite NaY-12 (24.4 mg O3 L-1 consumed), while 12 min of reaction with the zeolite NaY-60 (31 mg O3 L-1 consumed). In the case of individual experiments, ozonation removed 95 % of the total mixture of PhCs after 25 min (46.2 mg O3 L-1 consumed), while the direct adsorption, after 60 min of contact time, eliminated 30 % and 44 % using the NaY-12 and NaY-60 zeolites, respectively. Results showed that the Brønsted acid sites seemed to play an important role in the effectiveness of the treatment with ozone. Finally, the environmental assessment showed that the total risk quotients of pharmaceuticals were reduced between 87 %-99 % after ozonation in the presence of NaY-60 and NaY-12 zeolites. The results of this study demonstrate that catalytic ozonation using NaY zeolites as catalysts is a promising alternative for micropollutant elimination in real-world wastewater matrices.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Zeolitas , Águas Residuárias , Dióxido de Silício , Poluentes Químicos da Água/análise , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA