Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Biophys J ; 121(8): 1424-1434, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35314143

RESUMO

Viscoelastic properties of striated muscle are often measured using length perturbation analysis and quantified as a complex modulus, whose elastic and viscous components reflect the energy-storage and energy-absorbing properties of the tissue, respectively. The energy stored as inertia is commonly ignored due to the small size of samples examined, typically <1 mm. Considering recent advances in tissue engineering to generate muscle tissues of larger sizes, we questioned whether ignoring the inertial artifact was still reasonable in these samples. To answer this question, we derived and solved the one-dimensional wave equation that describes the propagation of strain along the length of a sample. The inertial artifact was predicted to contaminate the elastic modulus with (2πf)2L02ρ/6, where f is perturbation frequency, L0 is muscle length, and ρ is muscle density. We then measured viscoelastic properties up to 500 Hz in mouse skeletal muscle fibers at long (4.8 mm) and short (<1 mm) lengths and up to 100 Hz in rat cardiac slices at long (10-12 mm) and short (<2 mm) lengths. We found the elastic modulus of long preparations was elevated as frequency increased and was about half the magnitude of that predicted by the model. While the prediction tended to overestimate the measured inertial artifact, these results provided some validity to the model. We used the predicted artifact as an overly conservative estimate of error that might arise in a mechanics assay of mammalian striated muscle, whose nominal resting stiffness is on the order 100 kN m-2. We found that muscle lengths of <1 mm resulted in negligible inertial artifact (<0.5% error) for perturbation frequencies under 250 Hz. Muscle samples longer than 5 mm, on the other hand, would result in >5% error at frequencies of 200 Hz and higher.


Assuntos
Artefatos , Músculo Esquelético , Animais , Módulo de Elasticidade , Elasticidade , Mamíferos , Camundongos , Ratos , Viscosidade
2.
Am J Physiol Heart Circ Physiol ; 320(5): H1822-H1835, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33666504

RESUMO

Cardiac myosin binding protein-C (cMyBP-C) is a thick filament protein that influences sarcomere stiffness and modulates cardiac contraction-relaxation through its phosphorylation. Phosphorylation of cMyBP-C and ablation of cMyBP-C have been shown to increase the rate of MgADP release in the acto-myosin cross-bridge cycle in the intact sarcomere. The influence of cMyBP-C on Pi-dependent myosin kinetics has not yet been examined. We investigated the effect of cMyBP-C, and its phosphorylation, on myosin kinetics in demembranated papillary muscle strips bearing the ß-cardiac myosin isoform from nontransgenic and homozygous transgenic mice lacking cMyBP-C. We used quick stretch and stochastic length-perturbation analysis to characterize rates of myosin detachment and force development over 0-12 mM Pi and at maximal (pCa 4.8) and near-half maximal (pCa 5.75) Ca2+ activation. Protein kinase A (PKA) treatment was applied to half the strips to probe the effect of cMyBP-C phosphorylation on Pi sensitivity of myosin kinetics. Increasing Pi increased myosin cross-bridge detachment rate similarly for muscles with and without cMyBP-C, although these rates were higher in muscle without cMyBP-C. Treating myocardial strips with PKA accelerated detachment rate when cMyBP-C was present over all Pi, but not when cMyBP-C was absent. The rate of force development increased with Pi in all muscles. However, Pi sensitivity of the rate force development was reduced when cMyBP-C was present versus absent, suggesting that cMyBP-C inhibits Pi-dependent reversal of the power stroke or stabilizes cross-bridge attachment to enhance the probability of completing the power stroke. These results support a functional role for cMyBP-C in slowing myosin detachment rate, possibly through a direct interaction with myosin or by altering strain-dependent myosin detachment via cMyBP-C-dependent stiffness of the thick filament and myofilament lattice. PKA treatment reduces the role for cMyBP-C to slow myosin detachment and thus effectively accelerates ß-myosin detachment in the intact myofilament lattice.NEW & NOTEWORTHY Length perturbation analysis was used to demonstrate that ß-cardiac myosin characteristic rates of detachment and recruitment in the intact myofilament lattice are accelerated by Pi, phosphorylation of cMyBP-C, and the absence of cMyBP-C. The results suggest that cMyBP-C normally slows myosin detachment, including Pi-dependent detachment, and that this inhibition is released with phosphorylation or absence of cMyBP-C.


Assuntos
Proteínas de Transporte/metabolismo , Força Muscular , Contração Miocárdica , Miocárdio/metabolismo , Miosinas Ventriculares/metabolismo , Animais , Fenômenos Biomecânicos , Proteínas de Transporte/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Cinética , Masculino , Camundongos Knockout , Modelos Cardiovasculares , Fosforilação , Ligação Proteica
3.
Am J Physiol Heart Circ Physiol ; 320(6): H2188-H2200, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33861144

RESUMO

The interaction of phospholamban (PLB) and the sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) is a key regulator of cardiac contractility and a therapeutic target in heart failure (HF). PLB-mediated increases in SERCA2a activity improve cardiac function and HF. Clinically, this mechanism can only be exploited by a general activation of the proteinkinase A (PKA), which is associated with side effects and adverse clinical outcomes. A selective interference of the PLB-SERCA2a interaction is desirable but will require novel tools that allow for an integrated assessment of this interaction under both physiological and pathophysiological conditions. A circularly permutated green fluorescent protein (cpGFP) was interposed between SERCA2a and PLB to result into a single SERCA2a-cpGFP-PLB recombinant protein (SGP). Expression, phosphorylation, fluorescence, and function of SGP were evaluated. Expression of SGP-cDNA results in a functional recombinant protein at the predicted molecular weight. The PLB domain of SGP retains its ability to polymerize and can be phosphorylated by PKA activation. This increases the fluorescent yield of SGP by between 10% and 165% depending on cell line and conditions. In conclusion, a single recombinant fusion protein that combines SERCA2a, a circularly permutated green fluorescent protein, and PLB can be expressed in cells and can be phosphorylated at the PLB domain that markedly increases the fluorescence yield. SGP is a novel cellular SERCA2a-PLB interaction monitor.NEW & NOTEWORTHY This study describes the design and characterization of a novel biosensor that can visualize the interaction of SERCA2a and phospholamban (PLB). The biosensor combines SERCA2a, a circularly permutated green fluorescent protein, and PLB into one recombinant protein (SGP). Proteinkinase A activation results in phosphorylation of the PLB domain and is associated with a marked increase in the fluorescence yield to allow for real-time monitoring of the SERCA2a and PLB interaction in cells.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , DNA Complementar , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Ratos , Proteínas Recombinantes de Fusão , Proteínas Recombinantes , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Transfecção
4.
Biophys J ; 119(4): 806-820, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32755560

RESUMO

Zebrafish (Danio rerio) swim within days of fertilization, powered by muscles of the axial myotomes. Forces generated by these muscles can be measured rapidly in whole, intact larval tails by adapting protocols developed for ex vivo muscle mechanics. But it is not known how well these measurements reflect the function of the underlying muscle fibers and sarcomeres. Here, we consider the anatomy of the 5-day-old, wild-type larval tail, and implement technical modifications to measuring muscle physiology in intact tails. Specifically, we quantify fundamental relationships between force, length, and shortening velocity, and capture the extreme contractile speeds required to swim with tail-beat frequencies of 80-100 Hz. Therefore, we analyze 1000 frames/s videos to track the movement of structures, visible in the transparent tail, which correlate with sarcomere length. We also characterize the passive viscoelastic properties of the preparation to isolate forces contributed by nonmuscle structures within the tail. Myotomal muscles generate more than 95% of their maximal isometric stress (76 ± 3 mN/mm2) over the range of muscle lengths used in vivo. They have rapid twitch kinetics (full width at half-maximal stress: 11 ± 1 ms) and a high twitch/tetanus ratio (0.91 ± 0.05), indicating adaptations for fast excitation-contraction coupling. Although contractile stress is relatively low, myotomal muscles develop high net power (134 ± 20 W/kg at 80 Hz) in cyclical work loop experiments designed to simulate the in vivo dynamics of muscle fibers during swimming. When shortening at a constant speed of 7 ± 1 muscle lengths/s, muscles develop 86 ± 2% of isometric stress, whereas peak instantaneous power during 100 Hz work loops occurs at 18 ± 2 muscle lengths/s. These approaches can improve the usefulness of zebrafish as a model system for muscle research by providing a rapid and sensitive functional readout for experimental interventions.


Assuntos
Natação , Peixe-Zebra , Animais , Larva , Contração Muscular , Sarcômeros
5.
Am J Physiol Cell Physiol ; 317(6): C1213-C1228, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31532714

RESUMO

Muscle contraction may protect against the effects of chemotherapy to cause skeletal muscle atrophy, but the mechanisms underlying these benefits are unclear. To address this question, we utilized in vitro modeling of contraction and mechanotransduction in C2C12 myotubes treated with doxorubicin (DOX; 0.2 µM for 3 days). Myotubes expressed contractile proteins and organized these into functional myofilaments, as electrical field stimulation (STIM) induced intracellular calcium (Ca2+) transients and contractions, both of which were prevented by inhibition of membrane depolarization. DOX treatment reduced myotube myosin content, protein synthesis, and Akt (S308) and forkhead box O3a (FoxO3a; S253) phosphorylation and increased muscle RING finger 1 (MuRF1) expression. STIM (1 h/day) prevented DOX-induced reductions in myotube myosin content and Akt and FoxO3a phosphorylation, as well as increases in MuRF1 expression, but did not prevent DOX-induced reductions in protein synthesis. Inhibition of myosin-actin interaction during STIM prevented contraction and the antiatrophic effects of STIM without affecting Ca2+ cycling, suggesting that the beneficial effect of STIM derives from mechanotransductive pathways. Further supporting this conclusion, mechanical stretch of myotubes recapitulated the effects of STIM to prevent DOX suppression of FoxO3a phosphorylation and upregulation of MuRF1. DOX also increased reactive oxygen species (ROS) production, which led to a decrease in mitochondrial content. Although STIM did not alter DOX-induced ROS production, peroxisome proliferator-activated receptor-γ coactivator-1α and antioxidant enzyme expression were upregulated, and mitochondrial loss was prevented. Our results suggest that the activation of mechanotransductive pathways that downregulate proteolysis and preserve mitochondrial content protects against the atrophic effects of chemotherapeutics.


Assuntos
Doxorrubicina/efeitos adversos , Regulação da Expressão Gênica , Mecanotransdução Celular , Mitocôndrias/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Animais , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Transformada , Doxorrubicina/antagonistas & inibidores , Estimulação Elétrica , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Camundongos , Mitocôndrias/metabolismo , Modelos Biológicos , Contração Muscular/genética , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/prevenção & controle , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Miosinas/genética , Miosinas/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
J Mol Cell Cardiol ; 96: 11-25, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-25681584

RESUMO

Despite extensive study over the past six decades the coupling of chemical reaction and mechanical processes in muscle dynamics is not well understood. We lack a theoretical description of how chemical processes (metabolite binding, ATP hydrolysis) influence and are influenced by mechanical processes (deformation and force generation). To address this need, a mathematical model of the muscle cross-bridge (XB) cycle based on Huxley's sliding filament theory is developed that explicitly accounts for the chemical transformation events and the influence of strain on state transitions. The model is identified based on elastic and viscous moduli data from mouse and rat myocardial strips over a range of perturbation frequencies, and MgATP and inorganic phosphate (Pi) concentrations. Simulations of the identified model reproduce the observed effects of MgATP and MgADP on the rate of force development. Furthermore, simulations reveal that the rate of force re-development measured in slack-restretch experiments is not directly proportional to the rate of XB cycling. For these experiments, the model predicts that the observed increase in the rate of force generation with increased Pi concentration is due to inhibition of cycle turnover by Pi. Finally, the model captures the observed phenomena of force yielding suggesting that it is a result of rapid detachment of stretched attached myosin heads.


Assuntos
Difosfato de Adenosina/metabolismo , Coração/fisiologia , Modelos Biológicos , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Trifosfato de Adenosina/metabolismo , Algoritmos , Animais , Gatos , Cinética , Camundongos , Ratos , Sarcômeros
7.
Circulation ; 131(14): 1247-59, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25637629

RESUMO

BACKGROUND: The purpose of this study was to determine whether patients with heart failure and a preserved ejection fraction (HFpEF) have an increase in passive myocardial stiffness and the extent to which discovered changes depend on changes in extracellular matrix fibrillar collagen and cardiomyocyte titin. METHODS AND RESULTS: Seventy patients undergoing coronary artery bypass grafting underwent an echocardiogram, plasma biomarker determination, and intraoperative left ventricular epicardial anterior wall biopsy. Patients were divided into 3 groups: referent control (n=17, no hypertension or diabetes mellitus), hypertension (HTN) without (-) HFpEF (n=31), and HTN with (+) HFpEF (n=22). One or more of the following studies were performed on the biopsies: passive stiffness measurements to determine total, collagen-dependent and titin-dependent stiffness (differential extraction assay), collagen assays (biochemistry or histology), or titin isoform and phosphorylation assays. In comparison with controls, patients with HTN(-)HFpEF had no change in left ventricular end-diastolic pressure, myocardial passive stiffness, collagen, or titin phosphorylation but had an increase in biomarkers of inflammation (C-reactive protein, soluble ST2, tissue inhibitor of metalloproteinase 1). In comparison with both control and HTN(-)HFpEF, patients with HTN(+)HFpEF had increased left ventricular end-diastolic pressure, left atrial volume, N-terminal propeptide of brain natriuretic peptide, total, collagen-dependent, and titin-dependent stiffness, insoluble collagen, increased titin phosphorylation on PEVK S11878(S26), reduced phosphorylation on N2B S4185(S469), and increased biomarkers of inflammation. CONCLUSIONS: Hypertension in the absence of HFpEF did not alter passive myocardial stiffness. Patients with HTN(+)HFpEF had a significant increase in passive myocardial stiffness; collagen-dependent and titin-dependent stiffness were increased. These data suggest that the development of HFpEF depends on changes in both collagen and titin homeostasis.


Assuntos
Colágeno/fisiologia , Conectina/fisiologia , Insuficiência Cardíaca/patologia , Miocárdio/patologia , Idoso , Biomarcadores/sangue , Biópsia , Colágeno/análise , Complacência (Medida de Distensibilidade) , Conectina/análise , Complicações do Diabetes/metabolismo , Complicações do Diabetes/patologia , Diástole , Elasticidade , Feminino , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/metabolismo , Ventrículos do Coração , Humanos , Hipertensão/complicações , Inflamação , Masculino , Pessoa de Meia-Idade , Fosforilação , Isoformas de Proteínas/análise , Processamento de Proteína Pós-Traducional , Volume Sistólico
8.
Muscle Nerve ; 53(2): 252-4, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26032904

RESUMO

INTRODUCTION: Medial elbow pain is often considered to be a symptom associated with ulnar neuropathy at the elbow (UNE). We examined the relationship between medial elbow pain and a positive electrodiagnostic (EDx) test result for UNE. METHODS: We performed a retrospective review of 884 patients referred for EDx evaluation of UNE. Regression models were used to determine the odds ratios between clinical findings and a positive EDx result for UNE. RESULTS: Patients reported medial elbow pain in 44.3% of cases. Clinical factors that correlated with a positive EDx study result for UNE included male gender, small and ring finger numbness, ulnar intrinsic weakness, and age. Medial elbow pain was negatively correlated with a positive EDx result. CONCLUSIONS: This study demonstrates a negative correlation between medial elbow pain and a positive EDx result for UNE. Medial elbow pain should not be considered a clear diagnostic symptom of UNE.


Assuntos
Síndrome do Túnel Ulnar/diagnóstico , Cotovelo/patologia , Eletrodiagnóstico/métodos , Dor/diagnóstico , Potenciais de Ação/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Estatística como Assunto , Estatísticas não Paramétricas , Adulto Jovem
9.
Am J Physiol Cell Physiol ; 308(6): C473-84, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25567808

RESUMO

Skeletal muscle contractile performance is governed by the properties of its constituent fibers, which are, in turn, determined by the molecular interactions of the myofilament proteins. To define the molecular determinants of contractile function in humans, we measured myofilament mechanics during maximal Ca(2+)-activated and passive isometric conditions in single muscle fibers with homogenous (I and IIA) and mixed (I/IIA and IIA/X) myosin heavy chain (MHC) isoforms from healthy, young adult male (n = 5) and female (n = 7) volunteers. Fibers containing only MHC II isoforms (IIA and IIA/X) produced higher maximal Ca(2+)-activated forces over the range of cross-sectional areas (CSAs) examined than MHC I fibers, resulting in higher (24-42%) specific forces. The number and/or stiffness of the strongly bound myosin-actin cross bridges increased in the higher force-producing MHC II isoforms and, in all isoforms, better predicted force than CSA. In men and women, cross-bridge kinetics, in terms of myosin attachment time and rate of myosin force production, were independent of CSA, although women had faster (7-15%) kinetics. The relative proportion of cross bridges and/or their stiffness was reduced as fiber size increased, causing a decline in specific force. Results from our examination of molecular mechanisms across the range of physiological CSAs explain the variation in specific force among the different fiber types in human skeletal muscle, which may have relevance to understanding how various physiological and pathophysiological conditions modulate single-fiber and whole muscle contractility.


Assuntos
Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Força Muscular , Miosinas/metabolismo , Músculo Quadríceps/metabolismo , Actinas/metabolismo , Adulto , Feminino , Humanos , Cinética , Masculino , Miofibrilas/metabolismo , Miosina Tipo I/metabolismo , Isoformas de Proteínas , Músculo Quadríceps/citologia , Fatores Sexuais , Transdução de Sinais , Miosinas de Músculo Esquelético/metabolismo , Adulto Jovem
10.
J Biol Chem ; 289(34): 23977-91, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25006251

RESUMO

We examined the magnesium dependence of five class II myosins, including fast skeletal muscle myosin, smooth muscle myosin, ß-cardiac myosin (CMIIB), Dictyostelium myosin II (DdMII), and nonmuscle myosin IIA, as well as myosin V. We found that the myosins examined are inhibited in a Mg(2+)-dependent manner (0.3-9.0 mm free Mg(2+)) in both ATPase and motility assays, under conditions in which the ionic strength was held constant. We found that the ADP release rate constant is reduced by Mg(2+) in myosin V, smooth muscle myosin, nonmuscle myosin IIA, CMIIB, and DdMII, although the ADP affinity is fairly insensitive to Mg(2+) in fast skeletal muscle myosin, CMIIB, and DdMII. Single tryptophan probes in the switch I (Trp-239) and switch II (Trp-501) region of DdMII demonstrate these conserved regions of the active site are sensitive to Mg(2+) coordination. Cardiac muscle fiber mechanic studies demonstrate cross-bridge attachment time is increased at higher Mg(2+) concentrations, demonstrating that the ADP release rate constant is slowed by Mg(2+) in the context of an activated muscle fiber. Direct measurements of phosphate release in myosin V demonstrate that Mg(2+) reduces actin affinity in the M·ADP·Pi state, although it does not change the rate of phosphate release. Therefore, the Mg(2+) inhibition of the actin-activated ATPase activity observed in class II myosins is likely the result of Mg(2+)-dependent alterations in actin binding. Overall, our results suggest that Mg(2+) reduces the ADP release rate constant and rate of attachment to actin in both high and low duty ratio myosins.


Assuntos
Actinas/metabolismo , Difosfato de Adenosina/metabolismo , Magnésio/fisiologia , Proteínas Motores Moleculares/metabolismo , Miosinas/metabolismo , Animais , Cinética , Miocárdio/metabolismo , Ligação Proteica , Coelhos , Suínos
11.
BMC Musculoskelet Disord ; 16: 138, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-26049932

RESUMO

BACKGROUND: Dupuytren's disease (DD) is a slow, progressive fibroproliferative disorder affecting the palms of the hands. The disease is characterized by the formation of collagen rich- cords which gradually shorten by the action of myofibroblasts resulting in finger contractures. It is a disease that is confined to humans, and a major limiting factor in investigating this disorder has been the lack of a faithful animal model that can recapitulate its distinct biology. The aim of this study was to develop such a model by determining if Dupuytren's disease (DD)- and control carpal tunnel (CT)-derived fibroblasts could survive in the forepaw of the nude rats and continue to exhibit the distinct characteristics they display in in vitro cultures. METHODS: 1x10(7) fluorescently labeled DD- and CT-derived fibroblasts were transplanted into the left and right forepaws of nude rats respectively. Cells were tracked at regular intervals for a period of two months by quantifying emitted fluorescent signal using an IVIS imaging system. After a period of 62 days rat forepaw connective tissues were harvested for histology and total RNA was isolated. Human-specific probes were used to perform real time RT-PCR assays to examine the expression patterns of gene products associated with fibrosis in DD. Rat forepaw skin was also harvested to serve as an internal control. RESULTS: Both CT- and DD-derived fibroblasts survived for a period of 62 days, but DD-derived cells showed a significantly greater level of persistent fluorescent signal at the end of this time than did CT-derived cells. mRNA expression levels of α-smooth muscle actin (α-SMA), type I- and type III- collagens were all significantly elevated in the forepaw receiving DD cord-derived fibroblasts in comparison to CT-derived fibroblasts. Masson's trichrome stain confirmed increased collagen deposition in the forepaw that was injected with DD cord-derived fibroblasts. CONCLUSIONS: For the first time we describe an animal model for Dupuytren's disease at the orthotopic anatomical location. We further show that gene expression differences between control (CT) and diseased (DD) derived fibroblasts persist when these cells are transplanted to the forepaw of the nude rat. These preliminary findings indicate that, with further refinements, this animal model holds promise as a baseline for investigating novel therapeutic regimens to determine an effective strategy in treating DD.


Assuntos
Contratura de Dupuytren/etiologia , Fibroblastos/transplante , Membro Anterior/cirurgia , Actinas/genética , Actinas/metabolismo , Animais , Estudos de Casos e Controles , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Modelos Animais de Doenças , Contratura de Dupuytren/genética , Contratura de Dupuytren/metabolismo , Contratura de Dupuytren/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Membro Anterior/metabolismo , Membro Anterior/patologia , Humanos , Masculino , Fenótipo , RNA Mensageiro/metabolismo , Ratos Nus , Fatores de Tempo , Regulação para Cima
12.
J Shoulder Elbow Surg ; 24(6): 947-54, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25861851

RESUMO

BACKGROUND: Total elbow arthroplasty is successful in older, lower demand patients but not in the younger, more active individual with severe elbow arthritis. Interposition arthroplasty is an alternative for younger patients who hope to minimize the degree to which arm use is restricted. Interposition arthroplasty traditionally involves release of all ligaments and capsule. As a result, the postoperative care included the use of a hinged external fixator of the elbow to apply distraction and to permit motion during the early phases of healing. We describe a novel surgical technique without a hinged external fixator that allows secure fixation of the interposition graft through arthroscopic assistance and maintains the integrity of the medial collateral ligament with only a takedown and repair of the lateral collateral ligament complex. METHODS: A retrospective chart review was performed to analyze 4 patients with an average age of 57 years who underwent surgery between 2007 and 2011. The patients were also contacted to assess elbow-specific American Shoulder and Elbow Surgeons and Disabilities of the Arm, Shoulder, and Hand scores. RESULTS: The average follow-up was 3.6 years (range, 2.5-6 years), and 1 patient was converted to a total elbow arthroplasty after 2.5 years because of persistent pain. The remaining 3 patients have done well with regard to pain control, stability, and functional use of the operative extremity. There were no postoperative complications. DISCUSSION: On the basis of our small series of patients, an arthroscopically assisted elbow interposition arthroplasty without hinged external fixation can provide satisfactory medium-term outcomes as a salvage procedure for a difficult condition with limited options.


Assuntos
Tendão do Calcâneo/transplante , Artrite/cirurgia , Artroplastia/métodos , Artroscopia/métodos , Articulação do Cotovelo/cirurgia , Ligamentos Colaterais/cirurgia , Fixadores Externos , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Amplitude de Movimento Articular , Estudos Retrospectivos
13.
Am J Physiol Heart Circ Physiol ; 307(6): H933-8, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25015959

RESUMO

We have previously reported that Zn(2+) infused into the coronary arteries of isolated rat hearts leads to the potent dephosphorylation of phospholamban (PLB) as well as a noticeable but less potent dephosphorylation of the ryanodine receptor 2. We hypothesized in the present study that a Zn(2+)-activated phosphatase is located in the vicinity of the sarcoplasmic reticulum (SR) where PLB and ryanodine receptor 2 reside. We report here the novel finding of tissue-nonspecific alkaline phosphatase (TNAP), a zinc-dependent enzyme, localized to the SR in the cardiac sarcomere of mouse myocardium. TNAP activity was enhanced by injection of Zn acetate into a tail vein before harvesting the heart and imaged using electron microscopy of electron dense deposits indicative of the hydrolysis of exogenous ß-glycerophosphate. TNAP activity was observed localized to the ends of the Z-line corresponding to SR and was qualitatively more visible in myocardium of males compared with females. Correspondingly, PLB phosphorylation status was potently reduced in myocardium of males injected with Zn acetate, whereas there was no apparent effect of Zn acetate injection on PLB phosphorylation in females. Surprisingly, Western blot analysis of TNAP content suggested a significantly lower TNAP content in males compared with females. These data suggest that TNAP plays a role in governing the phosphorylation status of calcium handling proteins in the SR. Furthermore, the content and activity of TNAP are differentially regulated between the sexes and thus may account for some sex differences in cardiopathologies associated with calcium handling.


Assuntos
Fosfatase Alcalina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Sarcômeros/efeitos dos fármacos , Acetato de Zinco/farmacologia , Animais , Cálcio/metabolismo , Feminino , Injeções Intravenosas , Masculino , Camundongos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/ultraestrutura , Fosforilação , Sarcômeros/enzimologia , Sarcômeros/ultraestrutura , Fatores Sexuais , Acetato de Zinco/administração & dosagem
14.
Arch Biochem Biophys ; 552-553: 117-27, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24486373

RESUMO

Diminished skeletal muscle performance with aging, disuse, and disease may be partially attributed to the loss of myofilament proteins. Several laboratories have found a disproportionate loss of myosin protein content relative to other myofilament proteins, but due to methodological limitations, the structural manifestation of this protein loss is unknown. To investigate how variations in myosin content affect ensemble cross-bridge behavior and force production we simulated muscle contraction in the half-sarcomere as myosin was removed either (i) uniformly, from the Z-line end of thick-filaments, or (ii) randomly, along the length of thick-filaments. Uniform myosin removal decreased force production, showing a slightly steeper force-to-myosin content relationship than the 1:1 relationship that would be expected from the loss of cross-bridges. Random myosin removal also decreased force production, but this decrease was less than observed with uniform myosin loss, largely due to increased myosin attachment time (ton) and fractional cross-bridge binding with random myosin loss. These findings support our prior observations that prolonged ton may augment force production in single fibers with randomly reduced myosin content from chronic heart failure patients. These simulations also illustrate that the pattern of myosin loss along thick-filaments influences ensemble cross-bridge behavior and maintenance of force throughout the sarcomere.


Assuntos
Músculo Esquelético/metabolismo , Miosinas/metabolismo , Sarcômeros/metabolismo , Fenômenos Biomecânicos , Simulação por Computador , Humanos , Cinética , Modelos Biológicos , Modelos Moleculares , Músculo Esquelético/química , Miosinas/química , Sarcômeros/química
15.
J Muscle Res Cell Motil ; 35(5-6): 267-78, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25287107

RESUMO

We tested whether cardiac myosin binding protein-C (cMyBP-C) affects myosin cross-bridge kinetics in the two cardiac myosin heavy chain (MyHC) isoforms. Mice lacking cMyBP-C (t/t) and transgenic controls (WT(t/t)) were fed L-thyroxine (T4) to induce 90/10% expression of α/ß-MyHC. Non-transgenic (NTG) and t/t mice were fed 6-n-propyl-2-thiouracil (PTU) to induce 100% expression of ß-MyHC. Ca(2+)-activated, chemically-skinned myocardium underwent length perturbation analysis with varying [MgATP] to estimate the MgADP release rate (k(-ADP)) and MgATP binding rate (k(+ATP)). Values for (k(-ADP)) were not significantly different between t/t(T4) (102.2 ± 7.0 s(-1)) and WT(t/t)(T4) (91.3 ± 8.9 s(-1)), but k(+ATP)) was lower in t/t(T4) (165.9 ± 12.5 mM(-1) s(-1)) compared to WT(t/t)(T4) (298.6 ± 15.7 mM(-1) s(-1), P < 0.01). In myocardium expressing ß-MyHC, values for k(-ADP) were higher in t/t(PTU) (24.8 ± 1.0 s(-1)) compared to NTG(PTU) (15.6 ± 1.3 s(-1), P < 0.01), and k(+ATP) was not different. At saturating [MgATP], myosin detachment rate approximates k(-ADP), and detachment rate decreased as sarcomere length (SL) was increased in both t/t(T4) and WT(t/t)(T4) with similar sensitivities to SL. In myocardium expressing ß-MyHC, detachment rate decreased more as SL increased in t/t(PTU) (21.5 ± 1.3 s(-1) at 2.2 µm and 13.3 ± 0.9 s(-1) at 3.3 µm) compared to NTGPTU (15.8 ± 0.3 s(-1) at 2.2 µm and 10.9 ± 0.3 s(-1) at 3.3 µm) as detected by repeated-measures ANOVA (P < 0.01). These findings suggest that cMyBP-C reduces MgADP release rate for ß-MyHC, but not for α-MyHC, even as the number of cMyBP-C that overlap with the thin filament is reduced to zero. Therefore, cMyBP-C appears to affect ß-MyHC kinetics independent of its interaction with the thin filament.


Assuntos
Miosinas Cardíacas/metabolismo , Proteínas de Transporte/metabolismo , Miocárdio/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Animais , Modelos Animais de Doenças , Cinética , Masculino , Camundongos , Camundongos Transgênicos , Isoformas de Proteínas
16.
J Hand Surg Am ; 39(9): 1846-53, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25154573

RESUMO

The evolution in surgical technique and suture technology has provided an abundance of options for flexor tendon repairs. Multiple biomechanical studies have attempted to identify the best surgical technique based on suture properties, technical modifications, and repair configurations. However, the burgeoning amount of research on flexor tendon repairs has made it difficult to follow, and no gold standard has been determined for the optimal repair algorithm. Therefore, it seems that repairs are usually chosen based on a combination of familiarity from training, popularity, and technical difficulty. We will discuss the advantages, disadvantages, and technical aspects of some of the most common core flexor tendon repairs in the literature. We will also highlight the nomenclature carried through the years, drawings of the repairs referred to by that nomenclature, and the data that support those repairs.


Assuntos
Técnicas de Sutura/tendências , Traumatismos dos Tendões/cirurgia , Extremidade Superior/cirurgia , Fenômenos Biomecânicos , Epônimos , Medicina Baseada em Evidências , Resistência à Tração
17.
Artigo em Inglês | MEDLINE | ID: mdl-38584975

RESUMO

Cardiac microtubules have recently been implicated in mechanical dysfunction during heart failure. However, systemic intolerance and non-cardiac effects of microtubule-depolymerizing compounds have made it challenging to determine the effect of microtubules on myocardial performance. Herein, we leverage recent advancements in living myocardial slices to develop a stable working preparation that recapitulates the complexity of diastole by including early and late phases of diastolic filling. To determine the effect of cardiac microtubule depolymerization on diastolic performance, myocardial slices were perfused with oxygenated media to maintain constant isometric twitch forces for more than 90 min. Force-length work loops were collected before and after 90 min of treatment with either DMSO (vehicle) or colchicine (microtubule depolymerizer). A trapezoidal stretch was added prior to the beginning of ventricular systole to mimic late-stage-diastolic filling driven by atrial systole. Force-length work loops were obtained at fixed preload and afterload, and tissue velocity was obtained during diastole as an analog to trans-mitral Doppler. In isometric twitches, microtubule destabilization accelerated force development, relaxation kinetics, and decreased end diastolic stiffness. In work loops, microtubule destabilization increased stroke length, myocardial output, accelerated isometric contraction and relaxation, and increased the amplitude of early filling. Taken together, these results indicate that the microtubule destabilizer colchicine can improve diastolic performance by accelerating isovolumic relaxation and early filling leading to increase in myocardial work output.

18.
PLoS One ; 19(3): e0297212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38437198

RESUMO

Mechanical Control of Relaxation refers to the dependence of myocardial relaxation on the strain rate just prior to relaxation, but the mechanisms of enhanced relaxation are not well characterized. This study aimed to characterize how crossbridge kinetics varied with strain rate and time-to-stretch as the myocardium relaxed in early diastole. Ramp-stretches of varying rates (amplitude = 1% muscle length) were applied to intact rat cardiac trabeculae following a load-clamp at 50% of the maximal developed twitch force, which provides a first-order estimate of ejection and coupling to an afterload. The resultant stress-response was calculated as the difference between the time-dependent stress profile between load-clamped twitches with and without a ramp-stretch. The stress-response exhibited features of the step-stretch response of activated, permeabilized myocardium, such as distortion-dependent peak stress, rapid force decay related to crossbridge detachment, and stress recovery related to crossbridge recruitment. The peak stress was strain rate dependent, but the minimum stress and the time-to-minimum stress values were not. The initial rapid change in the stress-response indicates enhanced crossbridge detachment at higher strain rates during relaxation in intact cardiac trabeculae. Physiologic considerations, such as time-varying calcium, are discussed as potential limitations to fitting these data with traditional distortion-recruitment models of crossbridge activity.


Assuntos
Allium , Coração , Animais , Ratos , Miocárdio , Cálcio da Dieta , Osso Esponjoso
19.
Commun Biol ; 7(1): 648, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802450

RESUMO

In striated muscle, the sarcomeric protein myosin-binding protein-C (MyBP-C) is bound to the myosin thick filament and is predicted to stabilize myosin heads in a docked position against the thick filament, which limits crossbridge formation. Here, we use the homozygous Mybpc2 knockout (C2-/-) mouse line to remove the fast-isoform MyBP-C from fast skeletal muscle and then conduct mechanical functional studies in parallel with small-angle X-ray diffraction to evaluate the myofilament structure. We report that C2-/- fibers present deficits in force production and calcium sensitivity. Structurally, passive C2-/- fibers present altered sarcomere length-independent and -dependent regulation of myosin head conformations, with a shift of myosin heads towards actin. At shorter sarcomere lengths, the thin filament is axially extended in C2-/-, which we hypothesize is due to increased numbers of low-level crossbridges. These findings provide testable mechanisms to explain the etiology of debilitating diseases associated with MyBP-C.


Assuntos
Proteínas de Transporte , Camundongos Knockout , Animais , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Camundongos , Sarcômeros/metabolismo , Miofibrilas/metabolismo , Miofibrilas/genética , Músculo Esquelético/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/genética , Masculino , Miosinas/metabolismo , Miosinas/genética
20.
bioRxiv ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38798399

RESUMO

Myosin-binding protein H (MyBP-H) is a component of the vertebrate skeletal muscle sarcomere with sequence and domain homology to myosin-binding protein C (MyBP-C). Whereas skeletal muscle isoforms of MyBP-C (fMyBP-C, sMyBP-C) modulate muscle contractility via interactions with actin thin filaments and myosin motors within the muscle sarcomere "C-zone," MyBP-H has no known function. This is in part due to MyBP-H having limited expression in adult fast-twitch muscle and no known involvement in muscle disease. Quantitative proteomics reported here reveal MyBP-H is highly expressed in prenatal rat fast-twitch muscles and larval zebrafish, suggesting a conserved role in muscle development, and promoting studies to define its function. We take advantage of the genetic control of the zebrafish model and a combination of structural, functional, and biophysical techniques to interrogate the role of MyBP-H. Transgenic, FLAG-tagged MyBP-H or fMyBP-C both localize to the C-zones in larval myofibers, whereas genetic depletion of endogenous MyBP-H or fMyBP-C leads to increased accumulation of the other, suggesting competition for C-zone binding sites. Does MyBP-H modulate contractility from the C-zone? Globular domains critical to MyBP-C's modulatory functions are absent from MyBP-H, suggesting MyBP-H may be functionally silent. However, our results suggest an active role. Small angle x-ray diffraction of intact larval tails revealed MyBP-H contributes to the compression of the myofilament lattice accompanying stretch or contraction, while in vitro motility experiments indicate MyBP-H shares MyBP-C's capacity as a molecular "brake". These results provide new insights and raise questions about the role of the C-zone during muscle development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA